Individuals physically interacting in a group rapidly coordinate their movement by estimating the collective goal

How can a human collective coordinate, for example to move a banquet table, when each person is influenced by the inertia of others who may be inferior at the task? We hypothesized that large groups cannot coordinate through touch alone, accruing to a zero-sum scenario where individuals inferior at...

Full description

Saved in:
Bibliographic Details
Main Authors: Takagi, Atsushi, Hirashima, Masaya, Nozaki, Daichi, Burdet, Etienne
Other Authors: School of Mechanical and Aerospace Engineering
Format: Article
Language:English
Published: 2019
Subjects:
Online Access:https://hdl.handle.net/10356/90261
http://hdl.handle.net/10220/48453
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:How can a human collective coordinate, for example to move a banquet table, when each person is influenced by the inertia of others who may be inferior at the task? We hypothesized that large groups cannot coordinate through touch alone, accruing to a zero-sum scenario where individuals inferior at the task hinder superior ones. We tested this hypothesis by examining how dyads, triads and tetrads, whose right hands were physically coupled together, followed a common moving target. Surprisingly, superior individuals followed the target accurately even when coupled to an inferior group, and the interaction benefits increased with the group size. A computational model shows that these benefits arose as each individual uses their respective interaction force to infer the collective’s target and enhance their movement planning, which permitted coordination in seconds independent of the collective’s size. By estimating the collective’s movement goal, its individuals make physical interaction beneficial, swift and scalable.