Superconvergence for the gradient of finite element approximations by L2-projections
A gradient recovery technique is proposed and analyzed for finite element solutions which provides new gradient approximations with high order of accuracy. The recovery technique is based on the method of least-squares surface fitting in a finite-dimensional space corresponding to a coarse mesh. It...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2009
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/90786 http://hdl.handle.net/10220/6049 http://sfxna09.hosted.exlibrisgroup.com:3410/ntu/sfxlcl3?sid=metalib:ELSEVIER_SCOPUS&id=doi:&genre=&isbn=&issn=&date=2002&volume=40&issue=4&spage=1263&epage=1280&aulast=Heimsund&aufirst=%20B%20%2DO&auinit=&title=SIAM%20Journal%20on%20Numerical%20Analysis&atitle=Superconvergence%20for%20the%20gradient%20of%20finite%20element%20approximations%20by%20L2%20projections&sici. |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | A gradient recovery technique is proposed and analyzed for finite element solutions which provides new gradient approximations with high order of accuracy. The recovery technique is based on the method of least-squares surface fitting in a finite-dimensional space corresponding to a coarse mesh. It is proved that the recovered gradient has a high order of superconvergence for appropriately chosen surface fitting spaces. The recovery technique is robust, efficient, and applicable to a wide class of problems such as the Stokes and elasticity equations. |
---|