A supervised two-channel learning method for hidden Markov model and application on lip reading
In this paper, a novel two-channel learning method for hidden Markov model (HMM) is proposed. This method is specially designed to train HMMs for fine recognition from similar observations. The prominent features of this method are 1.) the criterion function is based on the difference between trai...
محفوظ في:
المؤلفون الرئيسيون: | Foo, Say Wei, Dong, Liang |
---|---|
مؤلفون آخرون: | IEEE International Conference on Advanced Learning Technologies (2nd : 2002 : Kazan, Russia) |
التنسيق: | Conference or Workshop Item |
اللغة: | English |
منشور في: |
2009
|
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/90829 http://hdl.handle.net/10220/4617 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
مواد مشابهة
-
A two-channel training algorithm for hidden markov model and its application to lip reading
بواسطة: Dong, L., وآخرون
منشور في: (2014) -
A two-channel training algorithm for hidden Markov model to identify visual speech elements
بواسطة: Foo, Say Wei, وآخرون
منشور في: (2009) -
Cross-speaker viseme mapping using hidden Markov models
بواسطة: Dong, Liang, وآخرون
منشور في: (2009) -
A two-channel training algorithm for hidden Markov model to identify visual speech elements
بواسطة: Foo, S.W., وآخرون
منشور في: (2014) -
Recognition of visual speech elements using adaptively boosted hidden Markov models
بواسطة: Foo, Say Wei, وآخرون
منشور في: (2009)