A variant of the level set method and applications to image segmentation

In this paper we propose a variant of the level set formulation for identifying curves separating regions into different phases. In classical level set approaches, the sign of level set functions are utilized to identify up to 2n phases. The novelty in our approach is to introduce a piecewise const...

Full description

Saved in:
Bibliographic Details
Main Authors: Lie, Johan, Lysaker, Marius, Tai, Xue Cheng
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2009
Subjects:
Online Access:https://hdl.handle.net/10356/91401
http://hdl.handle.net/10220/4604
http://sfxna09.hosted.exlibrisgroup.com:3410/ntu/sfxlcl3?sid=metalib:ISI_WOS_XML&id=doi:&genre=&isbn=&issn=0025-5718&date=2006&volume=75&issue=255&spage=1155&epage=1174&aulast=Lie&aufirst=%20J&auinit=J&title=MATHEMATICS%20OF%20COMPUTATION&atitle=A%20variant%20of%20the%20level%20set%20method%20and%20applications%20to%20image%20segmentation
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:In this paper we propose a variant of the level set formulation for identifying curves separating regions into different phases. In classical level set approaches, the sign of level set functions are utilized to identify up to 2n phases. The novelty in our approach is to introduce a piecewise constant level set function and use each constant value to represent a unique phase. If phases should be identified, the level set function must approach 2n predetermined constants. We just need one level set function to represent 2n unique phases, and this gains in storage capacity. Further, the reinitializing procedure requested in classical level set methods is superfluous using our approach. The minimization functional for our approach is locally convex and differentiable and thus avoids some of the problems with the nondifferentiability of the Delta and Heaviside functions. Numerical examples are given, and we also compare our method with related approaches.