A robust nonconforming H-2-element
Finite element methods for some elliptic fourth order singular perturbation problems are discussed. We show that if such problems are discretized by the nonconforming Morley method, in a regime close to second order elliptic equations, then the error deteriorates. In fact, a counterexample is given...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2009
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/91499 http://hdl.handle.net/10220/6056 http://sfxna09.hosted.exlibrisgroup.com:3410/ntu/sfxlcl3?sid=metalib:ELSEVIER_SCOPUS&id=doi:&genre=&isbn=&issn=&date=2001&volume=70&issue=234&spage=489&epage=505&aulast=Nilssen&aufirst=%20T%20K&auinit=&title=Mathematics%20of%20Computation&atitle=A%20robust%20nonconforming%20H. |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-91499 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-914992023-02-28T19:37:34Z A robust nonconforming H-2-element Nilssen, Trygve K. Tai, Xue Cheng Winther, Ragnar School of Physical and Mathematical Sciences DRNTU::Science::Mathematics::Applied mathematics::Numerical analysis Finite element methods for some elliptic fourth order singular perturbation problems are discussed. We show that if such problems are discretized by the nonconforming Morley method, in a regime close to second order elliptic equations, then the error deteriorates. In fact, a counterexample is given to show that the Morley method diverges for the reduced second order equation. As an alternative to the Morley element we propose to use a nonconforming H-2-element which is H-1-conforming. We show that the new finite element method converges in the energy norm uniformly in the perturbation parameter. Published version 2009-08-12T03:16:58Z 2019-12-06T18:06:46Z 2009-08-12T03:16:58Z 2019-12-06T18:06:46Z 2000 2000 Journal Article Nilssen, T. K., Tan, X. C., & Winther R.(2000). A robust nonconforming H-2-element. Mathematics of Computation, 70(234), 489-505. 0025-5718 https://hdl.handle.net/10356/91499 http://hdl.handle.net/10220/6056 http://sfxna09.hosted.exlibrisgroup.com:3410/ntu/sfxlcl3?sid=metalib:ELSEVIER_SCOPUS&id=doi:&genre=&isbn=&issn=&date=2001&volume=70&issue=234&spage=489&epage=505&aulast=Nilssen&aufirst=%20T%20K&auinit=&title=Mathematics%20of%20Computation&atitle=A%20robust%20nonconforming%20H. 10.1090/S0025-5718-00-01230-8 en Mathematics of Computation. Mathematics of Computation © copyright 2000 American Mathematical Society. The journal's website is located at http://www.ams.org/mcom/. 17 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Science::Mathematics::Applied mathematics::Numerical analysis |
spellingShingle |
DRNTU::Science::Mathematics::Applied mathematics::Numerical analysis Nilssen, Trygve K. Tai, Xue Cheng Winther, Ragnar A robust nonconforming H-2-element |
description |
Finite element methods for some elliptic fourth order singular perturbation problems are discussed. We show that if such problems are discretized by the nonconforming Morley method, in a regime close to second order elliptic equations, then the error deteriorates. In fact, a counterexample is given to show that the Morley method diverges for the reduced second order equation. As an alternative to the Morley element we propose to use a nonconforming H-2-element which is H-1-conforming. We show that the new finite element method converges in the energy norm uniformly in the perturbation parameter. |
author2 |
School of Physical and Mathematical Sciences |
author_facet |
School of Physical and Mathematical Sciences Nilssen, Trygve K. Tai, Xue Cheng Winther, Ragnar |
format |
Article |
author |
Nilssen, Trygve K. Tai, Xue Cheng Winther, Ragnar |
author_sort |
Nilssen, Trygve K. |
title |
A robust nonconforming H-2-element |
title_short |
A robust nonconforming H-2-element |
title_full |
A robust nonconforming H-2-element |
title_fullStr |
A robust nonconforming H-2-element |
title_full_unstemmed |
A robust nonconforming H-2-element |
title_sort |
robust nonconforming h-2-element |
publishDate |
2009 |
url |
https://hdl.handle.net/10356/91499 http://hdl.handle.net/10220/6056 http://sfxna09.hosted.exlibrisgroup.com:3410/ntu/sfxlcl3?sid=metalib:ELSEVIER_SCOPUS&id=doi:&genre=&isbn=&issn=&date=2001&volume=70&issue=234&spage=489&epage=505&aulast=Nilssen&aufirst=%20T%20K&auinit=&title=Mathematics%20of%20Computation&atitle=A%20robust%20nonconforming%20H. |
_version_ |
1759857443846750208 |