A robust nonconforming H-2-element

Finite element methods for some elliptic fourth order singular perturbation problems are discussed. We show that if such problems are discretized by the nonconforming Morley method, in a regime close to second order elliptic equations, then the error deteriorates. In fact, a counterexample is given...

Full description

Saved in:
Bibliographic Details
Main Authors: Nilssen, Trygve K., Tai, Xue Cheng, Winther, Ragnar
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2009
Subjects:
Online Access:https://hdl.handle.net/10356/91499
http://hdl.handle.net/10220/6056
http://sfxna09.hosted.exlibrisgroup.com:3410/ntu/sfxlcl3?sid=metalib:ELSEVIER_SCOPUS&id=doi:&genre=&isbn=&issn=&date=2001&volume=70&issue=234&spage=489&epage=505&aulast=Nilssen&aufirst=%20T%20K&auinit=&title=Mathematics%20of%20Computation&atitle=A%20robust%20nonconforming%20H.
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-91499
record_format dspace
spelling sg-ntu-dr.10356-914992023-02-28T19:37:34Z A robust nonconforming H-2-element Nilssen, Trygve K. Tai, Xue Cheng Winther, Ragnar School of Physical and Mathematical Sciences DRNTU::Science::Mathematics::Applied mathematics::Numerical analysis Finite element methods for some elliptic fourth order singular perturbation problems are discussed. We show that if such problems are discretized by the nonconforming Morley method, in a regime close to second order elliptic equations, then the error deteriorates. In fact, a counterexample is given to show that the Morley method diverges for the reduced second order equation. As an alternative to the Morley element we propose to use a nonconforming H-2-element which is H-1-conforming. We show that the new finite element method converges in the energy norm uniformly in the perturbation parameter. Published version 2009-08-12T03:16:58Z 2019-12-06T18:06:46Z 2009-08-12T03:16:58Z 2019-12-06T18:06:46Z 2000 2000 Journal Article Nilssen, T. K., Tan, X. C., & Winther R.(2000). A robust nonconforming H-2-element. Mathematics of Computation, 70(234), 489-505. 0025-5718 https://hdl.handle.net/10356/91499 http://hdl.handle.net/10220/6056 http://sfxna09.hosted.exlibrisgroup.com:3410/ntu/sfxlcl3?sid=metalib:ELSEVIER_SCOPUS&id=doi:&genre=&isbn=&issn=&date=2001&volume=70&issue=234&spage=489&epage=505&aulast=Nilssen&aufirst=%20T%20K&auinit=&title=Mathematics%20of%20Computation&atitle=A%20robust%20nonconforming%20H. 10.1090/S0025-5718-00-01230-8 en Mathematics of Computation. Mathematics of Computation © copyright 2000 American Mathematical Society. The journal's website is located at http://www.ams.org/mcom/. 17 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Science::Mathematics::Applied mathematics::Numerical analysis
spellingShingle DRNTU::Science::Mathematics::Applied mathematics::Numerical analysis
Nilssen, Trygve K.
Tai, Xue Cheng
Winther, Ragnar
A robust nonconforming H-2-element
description Finite element methods for some elliptic fourth order singular perturbation problems are discussed. We show that if such problems are discretized by the nonconforming Morley method, in a regime close to second order elliptic equations, then the error deteriorates. In fact, a counterexample is given to show that the Morley method diverges for the reduced second order equation. As an alternative to the Morley element we propose to use a nonconforming H-2-element which is H-1-conforming. We show that the new finite element method converges in the energy norm uniformly in the perturbation parameter.
author2 School of Physical and Mathematical Sciences
author_facet School of Physical and Mathematical Sciences
Nilssen, Trygve K.
Tai, Xue Cheng
Winther, Ragnar
format Article
author Nilssen, Trygve K.
Tai, Xue Cheng
Winther, Ragnar
author_sort Nilssen, Trygve K.
title A robust nonconforming H-2-element
title_short A robust nonconforming H-2-element
title_full A robust nonconforming H-2-element
title_fullStr A robust nonconforming H-2-element
title_full_unstemmed A robust nonconforming H-2-element
title_sort robust nonconforming h-2-element
publishDate 2009
url https://hdl.handle.net/10356/91499
http://hdl.handle.net/10220/6056
http://sfxna09.hosted.exlibrisgroup.com:3410/ntu/sfxlcl3?sid=metalib:ELSEVIER_SCOPUS&id=doi:&genre=&isbn=&issn=&date=2001&volume=70&issue=234&spage=489&epage=505&aulast=Nilssen&aufirst=%20T%20K&auinit=&title=Mathematics%20of%20Computation&atitle=A%20robust%20nonconforming%20H.
_version_ 1759857443846750208