Dynamics of a one-dimensional Holstein polaron with Davydov Ansatze
Following the Dirac-Frenkel time-dependent variational principle, dynamics of a one-dimensional Holstein polaron is probed by employing the Davydov D2 Ansatz with two sets of variational parameters, one for each constituting particle in the exciton-phonon system, and a simplified variant of the Davyd...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2010
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/91744 http://hdl.handle.net/10220/6296 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Following the Dirac-Frenkel time-dependent variational principle, dynamics of a one-dimensional Holstein polaron is probed by employing the Davydov D2 Ansatz with two sets of variational parameters, one for each constituting particle in the exciton-phonon system, and a simplified variant of the Davydov D1 Ansatz, also known as the D Ansatz, with an additional set of phonon displacement parameters. A close examination of variational outputs from the two trial states reveals fine details of the polaron structure and intricacies of dynamic exciton-phonon interactions. Superradiance coherence sizes, speeds of exciton-induced phonon wave packets, linear optical absorption, and polaron energy compositions are also included in the study. |
---|