A discrete de Rham complex with enhanced smoothness

Discrete de Rham complexes are fundamental tools in the construction of stable elements for some finite element methods. The purpose of this paper is to discuss a new discrete de Rham complex in three space dimensions, where the finite element spaces have extra smoothness compared to...

全面介紹

Saved in:
書目詳細資料
Main Authors: Tai, Xue Cheng, Winther, Ragnar
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2009
主題:
在線閱讀:https://hdl.handle.net/10356/91827
http://hdl.handle.net/10220/4596
http://sfxna09.hosted.exlibrisgroup.com:3410/ntu/sfxlcl3?url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rft.object_id=954933105326&sfx.request_id=192332&sfx.ctx_obj_item=0
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Discrete de Rham complexes are fundamental tools in the construction of stable elements for some finite element methods. The purpose of this paper is to discuss a new discrete de Rham complex in three space dimensions, where the finite element spaces have extra smoothness compared to the standard requirements. The motivation for this construction is to produce discretizations which have uniform stability properties for certain families of singular perturbation problem. In particular, we show how the spaces constructed here lead to discretizations of Stokes type systems which have uniform convergence properties as the Stokes flow approaches a Darcy flow.