Convergence rate analysis of a multiplicative Schwarz method for variational inequalities
This paper derives a linear convergence for the Schwarz overlapping domain decomposition method when applied to constrained minimization problems. The convergence analysis is based on a minimization approach to the corresponding functional over a convex set. A general framework of convergence is est...
Saved in:
總結: | This paper derives a linear convergence for the Schwarz overlapping domain decomposition method when applied to constrained minimization problems. The convergence analysis is based on a minimization approach to the corresponding functional over a convex set. A general framework of convergence is established for some multiplicative Schwarz algorithm. The abstract theory is particularly applied to some obstacle problems, which yields a linear convergence for the corresponding Schwarz overlapping domain decomposition method of one and two levels. Numerical experiments are presented to confirm the convergence estimate derived in this paper. |
---|