The field descent method
We obtain a broadly applicable decomposition of group ring elements into a "subfield part" and a "kernel part". Applications include the verification of Lander's conjecture for all difference sets whose order is a power of a prime >3 and for all McFarland, Spence and Chen...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2009
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/91963 http://hdl.handle.net/10220/6034 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We obtain a broadly applicable decomposition of group ring elements into a "subfield part" and a "kernel part". Applications include the verification of Lander's conjecture for all difference sets whose order is a power of a prime >3 and for all McFarland, Spence and Chen/Davis/Jedwab difference sets. We obtain a new general exponent bound for difference sets. We show that there is no circulant Hadamard matrix of order v with 4<v<548, 964, 900 and no Barker sequence of length l with 13 < l < 10^22. |
---|