New hadamard matrices of order 4p^2 obtained from Jacobi sums of order 16
Let p=7 mod 6 be a prime. Then there are integers a,b,c,d with a=15 mod 6, b= 0 mod 4, p^2=a^2+2(b^2+c^2+d^2), and 2ab=c^2-2cd-d^2. We show that there is a regular Hadamard matrix of order 4p2 provided that p=a±2b or p=a+δ12b+4δ2c+4δ1δ2d with δi=±1.
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2009
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/92119 http://hdl.handle.net/10220/6066 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-92119 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-921192023-02-28T19:30:07Z New hadamard matrices of order 4p^2 obtained from Jacobi sums of order 16 Bernhard, Schmidt Ma, Siu Lun Leung, Ka Hin School of Physical and Mathematical Sciences DRNTU::Science::Mathematics::Discrete mathematics::Combinatorics Let p=7 mod 6 be a prime. Then there are integers a,b,c,d with a=15 mod 6, b= 0 mod 4, p^2=a^2+2(b^2+c^2+d^2), and 2ab=c^2-2cd-d^2. We show that there is a regular Hadamard matrix of order 4p2 provided that p=a±2b or p=a+δ12b+4δ2c+4δ1δ2d with δi=±1. Accepted version 2009-08-12T06:14:11Z 2019-12-06T18:17:45Z 2009-08-12T06:14:11Z 2019-12-06T18:17:45Z 2006 2006 Journal Article Schmidt, B., Ma, S. L., & Ka, H. L. (2006). New Hadamard Matrices of Order 4p^2 obtained from Jacobi Sums of Order 16. Journal of Combinatorial Theory Series A, 113(5), 822-838. 0097-3165 https://hdl.handle.net/10356/92119 http://hdl.handle.net/10220/6066 10.1016/j.jcta.2005.07.011 en Journal of combinatorial theory series A. Journal of Combinatorial Theory Series A © copyright 2006 Elsevier. The journal's website is located at http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WHS-4JRVFR6-1&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=21abc0c7c783ebc249d071647769d03e. 18 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Science::Mathematics::Discrete mathematics::Combinatorics |
spellingShingle |
DRNTU::Science::Mathematics::Discrete mathematics::Combinatorics Bernhard, Schmidt Ma, Siu Lun Leung, Ka Hin New hadamard matrices of order 4p^2 obtained from Jacobi sums of order 16 |
description |
Let p=7 mod 6 be a prime. Then there are integers a,b,c,d with a=15 mod 6, b= 0 mod 4, p^2=a^2+2(b^2+c^2+d^2), and 2ab=c^2-2cd-d^2. We show that there is a regular Hadamard matrix of order 4p2 provided that p=a±2b or p=a+δ12b+4δ2c+4δ1δ2d with δi=±1. |
author2 |
School of Physical and Mathematical Sciences |
author_facet |
School of Physical and Mathematical Sciences Bernhard, Schmidt Ma, Siu Lun Leung, Ka Hin |
format |
Article |
author |
Bernhard, Schmidt Ma, Siu Lun Leung, Ka Hin |
author_sort |
Bernhard, Schmidt |
title |
New hadamard matrices of order 4p^2 obtained from Jacobi sums of order 16 |
title_short |
New hadamard matrices of order 4p^2 obtained from Jacobi sums of order 16 |
title_full |
New hadamard matrices of order 4p^2 obtained from Jacobi sums of order 16 |
title_fullStr |
New hadamard matrices of order 4p^2 obtained from Jacobi sums of order 16 |
title_full_unstemmed |
New hadamard matrices of order 4p^2 obtained from Jacobi sums of order 16 |
title_sort |
new hadamard matrices of order 4p^2 obtained from jacobi sums of order 16 |
publishDate |
2009 |
url |
https://hdl.handle.net/10356/92119 http://hdl.handle.net/10220/6066 |
_version_ |
1759855140989304832 |