New hadamard matrices of order 4p^2 obtained from Jacobi sums of order 16
Let p=7 mod 6 be a prime. Then there are integers a,b,c,d with a=15 mod 6, b= 0 mod 4, p^2=a^2+2(b^2+c^2+d^2), and 2ab=c^2-2cd-d^2. We show that there is a regular Hadamard matrix of order 4p2 provided that p=a±2b or p=a+δ12b+4δ2c+4δ1δ2d with δi=±1.
Saved in:
Main Authors: | , , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2009
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/92119 http://hdl.handle.net/10220/6066 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
成為第一個發表評論!