The isometries of the cut, metric and hypermetric cones

We show that the symmetry groups of the cut cone Cutn and the metric cone Metn both consist of the isometries induced by the permutations on {1, . . . , n}; that is, Is(Cutn) = Is(Metn) ≃ Sym(n) for n ≥ 5. For n = 4 we have Is(Cut4) = Is(Met4) ≃ Sym(3) × Sym(4). This result can be extended to cones...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Deza, Antoine., Goldengorin, Boris., Pasechnik, Dmitrii V.
مؤلفون آخرون: School of Physical and Mathematical Sciences
التنسيق: مقال
اللغة:English
منشور في: 2011
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/92362
http://hdl.handle.net/10220/6867
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:We show that the symmetry groups of the cut cone Cutn and the metric cone Metn both consist of the isometries induced by the permutations on {1, . . . , n}; that is, Is(Cutn) = Is(Metn) ≃ Sym(n) for n ≥ 5. For n = 4 we have Is(Cut4) = Is(Met4) ≃ Sym(3) × Sym(4). This result can be extended to cones containing the cuts as extreme rays and for which the triangle inequalities are facet-inducing. For instance, Is(Hypn) ≃ Sym(n) for n ≥ 5, where Hypn denotes the hypermetric cone.