Simultaneous copper ion removal and hydrogen production from water over a TiO2 nanotube photocatalyst

A one-dimensioal (1-D) mesoporous TiO2 nanotube (TiNT) was successfully synthesized by hydrothermal-calcination process, and employed in simultaneous photocatalytic Cu2+ removal and H2 production. Under irradiation, Cu2+ in wide concentration range of 8-800 ppm, could be reduced rapidly, and the red...

Full description

Saved in:
Bibliographic Details
Main Authors: Xu, S., Ng, J., Wang, Y., Du, Alan J., Sun, Darren Delai
Other Authors: School of Civil and Environmental Engineering
Format: Article
Language:English
Published: 2012
Subjects:
Online Access:https://hdl.handle.net/10356/93624
http://hdl.handle.net/10220/7679
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:A one-dimensioal (1-D) mesoporous TiO2 nanotube (TiNT) was successfully synthesized by hydrothermal-calcination process, and employed in simultaneous photocatalytic Cu2+ removal and H2 production. Under irradiation, Cu2+ in wide concentration range of 8-800 ppm, could be reduced rapidly, and the reduction was not severely impacted by co-existing inorganic ions in solution. Simultaneous with Cu2+ reduction, noticeable H2 was produced over the in-situ fabricated Cu incorporated TiNT (Cu-TiNT) photocatalyst, while H2 evolution rate was controlled by Cu2+ reduction process, due to competition of electrons between protons and Cu2+. In addition, H2 generation activity of Cu-TiNT depended on initial Cu2+/Ti ratio, and could be depressed by co-existing ions in solution. Fast Cu2+ reduction and remarkable H2 evolution confirmed the feasibility of simultaneous Cu2+ removal and H2 production over TiNT photocatalyst.