High speed photoacoustic tomography system with low cost portable pulsed diode laser

Photoacoustic tomography (PAT) is a potential hybrid imaging modality that has attracted great attention in the fields of medical imaging. In order to generate photoacoustic signal efficiently Q-switched Nd:YAG pump lasers capable of generating tens of millijoules of nanosecond laser pulses have b...

Full description

Saved in:
Bibliographic Details
Main Authors: Upputuri, Paul Kumar, Sivasubramanian, Kathyayini, Pramanik, Manojit
Other Authors: School of Chemical and Biomedical Engineering
Format: Conference or Workshop Item
Language:English
Published: 2015
Subjects:
Online Access:https://hdl.handle.net/10356/93715
http://hdl.handle.net/10220/38387
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Photoacoustic tomography (PAT) is a potential hybrid imaging modality that has attracted great attention in the fields of medical imaging. In order to generate photoacoustic signal efficiently Q-switched Nd:YAG pump lasers capable of generating tens of millijoules of nanosecond laser pulses have been widely used. However, PAT systems using such lasers have limitations in clinical applications because of their high cost, large size, and cooling requirements. Furthermore, the low pulse repetition rate (PRR) of tens of hertz is not suitable for real-time PAT. So, there is a need for inexpensive, compact, simple, fast imaging system for clinical applications. Nanosecond pulsed laser diodes could meet these requirements. In this work, we present a high-speed photoacoustic tomography imaging system that uses a compact and yet relatively powerful near-infrared pulsed laser diode. The PAT system was tested on phantoms to verify its potential imaging speed. Photoacoustic reconstructed images at different scanning speeds are presented. With single ultrasound detector scanning, the system could provide PA image ~10 times faster than the Nd:YAG laser based systems.