Approximation of the stability number of a graph via copositive programming
Lovász and Schrijver [SIAM J. Optim., 1 (1991), pp. 166–190] showed how to formulate increasingly tight approximations of the stable set polytope of a graph by solving semidefinite programs (SDPs) of increasing size (lift-and-project method). In this paper we present a similar idea. We show how the s...
Saved in:
Main Authors: | Klerk, Etienne de., Pasechnik, Dmitrii V. |
---|---|
其他作者: | School of Physical and Mathematical Sciences |
格式: | Article |
語言: | English |
出版: |
2011
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/93758 http://hdl.handle.net/10220/6790 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
A note on the stability number of an orthogonality graph
由: Klerk, Etienne de., et al.
出版: (2011) -
Improved lower bounds on book crossing numbers of complete graphs
由: Salazar, G., et al.
出版: (2014) -
Improved bounds for the crossing numbers of Km,n and Kn
由: Klerk, Etienne de., et al.
出版: (2011) -
On semidefinite programming relaxations of the traveling salesman problem
由: De Klerk, Etienne., et al.
出版: (2009) -
On approximate graph colouring and max-k-cut algorithms based on the θ-function
由: Klerk, Etienne de., et al.
出版: (2013)