Subsets close to invariant subsets for group actions

Let G be a group acting on a set Ω and k a non-negative integer. A subset (finite or infinite) A ⊆ Ω is called k-quasi-invariant if |Ag \ A| ≤k for every g ∈ G. It is shown that if A is k-quasi-invariant for k ≥1 , then there exists an invariant subset Γ⊆Ω such that |A Δ Γ | < 2ek [(In 2k)]. Info...

全面介紹

Saved in:
書目詳細資料
Main Authors: Brailovsky, Leonid., Pasechnik, Dmitrii V., Praeger, Cheryl E.
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2011
主題:
在線閱讀:https://hdl.handle.net/10356/93782
http://hdl.handle.net/10220/6800
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English