Subsets close to invariant subsets for group actions
Let G be a group acting on a set Ω and k a non-negative integer. A subset (finite or infinite) A ⊆ Ω is called k-quasi-invariant if |Ag \ A| ≤k for every g ∈ G. It is shown that if A is k-quasi-invariant for k ≥1 , then there exists an invariant subset Γ⊆Ω such that |A Δ Γ | < 2ek [(In 2k)]. Info...
Saved in:
Main Authors: | , , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2011
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/93782 http://hdl.handle.net/10220/6800 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
成為第一個發表評論!