Improved performance of polyvinylidenefluoride-hexafluorpropylene based nanocomposite polymer membranes containing lithium bis(oxalato)borate by phase inversion for lithium batteries

Nanocomposite polymer electrolyte membranes were prepared by phase inversion technique in polyvinylidenefluoride-hexafluoropropylene (PVdFeHFP) matrix. These membranes were gelled with 0.5 M LiBOB in EC:DEC (1:1 v/v). These gel polymer membranes (GPMs) were incorporated with nanoparticles of AlO(OH)...

Full description

Saved in:
Bibliographic Details
Main Authors: Aravindan, Vanchiappan, Vickraman, Palanisamy, Srinivasan, Madhavi, Sivashanmugam, A., Thirunakaran, R., Gopukumar, S.
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2011
Subjects:
Online Access:https://hdl.handle.net/10356/93828
http://hdl.handle.net/10220/7018
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Nanocomposite polymer electrolyte membranes were prepared by phase inversion technique in polyvinylidenefluoride-hexafluoropropylene (PVdFeHFP) matrix. These membranes were gelled with 0.5 M LiBOB in EC:DEC (1:1 v/v). These gel polymer membranes (GPMs) were incorporated with nanoparticles of AlO(OH)n and prepared composite polymer membranes (CPMs) also. The a.c. impedance analysis shows that AlO(OH)n filled membrane exhibits conductivity of 1.82 x 10^-3 S cm^-1 at ambient temperature. The Li/CPM/LiFePO4 cell delivered a specific discharge capacity of 158 and 147 mAh g^-1 at first and at 20th cycle respectively discharged at C/20 rate. The cell experiences a capacity fade of 0.1 mAh g^-1 cycle^-1 over the investigated 20 cycles. The studies vindicate that AlO(OH)n filled PVdFeHFP polymer membranes could be the potential material to use as separator cum electrolyte in lithium batteries in conjunction with LiFePO4 as a counterpart.