Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique

Ferroelectric ceramics are important electronic materials that have found a wide range of industrial and commercial applications, such as high-dielectric constant capacitors, piezoelectric sonar or ultrasonic transducers, pyroelectric security sensors, medical diagnostic transducers, electro-optical...

Full description

Saved in:
Bibliographic Details
Main Authors: Kong, Ling Bing, Zhang, T. S., Ma, Jan, Boey, Freddy Yin Chiang
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2012
Subjects:
Online Access:https://hdl.handle.net/10356/93903
http://hdl.handle.net/10220/7657
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-93903
record_format dspace
spelling sg-ntu-dr.10356-939032023-07-14T15:52:18Z Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique Kong, Ling Bing Zhang, T. S. Ma, Jan Boey, Freddy Yin Chiang School of Materials Science & Engineering DRNTU::Engineering::Materials::Functional materials Ferroelectric ceramics are important electronic materials that have found a wide range of industrial and commercial applications, such as high-dielectric constant capacitors, piezoelectric sonar or ultrasonic transducers, pyroelectric security sensors, medical diagnostic transducers, electro-optical light valves, and ultrasonic motors, to name a few. The performances of ferroelectrics are closely related to the ways they are processed. The conventional solid state reaction method requires high calcination and sintering temperatures, resulting in the loss of lead, bismuth or lithium components due to their high volatilities, thus worsening the microstructural and subsequently the electrical properties of the ferroelectric materials. Various wet chemistry based routes have been developed to synthesize ultra-fine and even nano-sized ferroelectric powders. However, most of the chemistry based routes still involve calcinations, although at relatively lower temperatures. High energy mechanochemical milling process has shown that some ferroelectric materials can be synthesized directly from their oxide precursors in the form of nano-sized powders, without the need for the calcination at intermediate temperatures, thus making the process very simple. A large number of ferroelectric materials, including lead-containing ferroelectrics, antiferroelectrics and relaxors, and bismuth-containing Aurivillius families, have been synthesized by the high-energy milling process. Some ferroelectrics, such as barium titanate (BaTiO3 or BT), lead iron tungstate [Pb(Fe2/3W1/3)O3 or PFW], and several bismuth-containing materials, that cannot be directly produced from their oxide mixtures, have been formed at relatively low temperatures. Ferroelectric ceramics derived from the activated precursors demonstrated better microstructure and electrical properties than those without mechanochemical treatment. This review presents an overview of the recent progress in the synthesis of ferroelectric ceramic powders using various high-energy milling techniques. The progress includes several aspects: (i) direct synthesis of nano-sized powders with better sinterability, (ii) promoted reactive sintering due to the modification of the precursors, (iii) amorphization of the precursors, and (iv) refinement of the precursors with high homogeneity. The underlying mechanisms of mechanochemical synthesis of ferroelectric materials are discussed. Further research emphasises on issues related to the synthesis of ferroelectric ceramic powders are suggested. Accepted version 2012-03-22T03:37:05Z 2019-12-06T18:47:27Z 2012-03-22T03:37:05Z 2019-12-06T18:47:27Z 2007 2007 Journal Article Kong, L. B., Zhang, T. S., Ma, J. & Boey, F. Y. C. (2008). Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique. Progress in Materials Science, 53(2), 207-322. https://hdl.handle.net/10356/93903 http://hdl.handle.net/10220/7657 10.1016/j.pmatsci.2007.05.001 en Progress in materials science © 2007 Elsevier. This is the author created version of a work that has been peer reviewed and accepted for publication by Progress in Materials Science, Elsevier. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [DOI: http://dx.doi.org/10.1016/j.pmatsci.2007.05.001]. 144 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Materials::Functional materials
spellingShingle DRNTU::Engineering::Materials::Functional materials
Kong, Ling Bing
Zhang, T. S.
Ma, Jan
Boey, Freddy Yin Chiang
Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique
description Ferroelectric ceramics are important electronic materials that have found a wide range of industrial and commercial applications, such as high-dielectric constant capacitors, piezoelectric sonar or ultrasonic transducers, pyroelectric security sensors, medical diagnostic transducers, electro-optical light valves, and ultrasonic motors, to name a few. The performances of ferroelectrics are closely related to the ways they are processed. The conventional solid state reaction method requires high calcination and sintering temperatures, resulting in the loss of lead, bismuth or lithium components due to their high volatilities, thus worsening the microstructural and subsequently the electrical properties of the ferroelectric materials. Various wet chemistry based routes have been developed to synthesize ultra-fine and even nano-sized ferroelectric powders. However, most of the chemistry based routes still involve calcinations, although at relatively lower temperatures. High energy mechanochemical milling process has shown that some ferroelectric materials can be synthesized directly from their oxide precursors in the form of nano-sized powders, without the need for the calcination at intermediate temperatures, thus making the process very simple. A large number of ferroelectric materials, including lead-containing ferroelectrics, antiferroelectrics and relaxors, and bismuth-containing Aurivillius families, have been synthesized by the high-energy milling process. Some ferroelectrics, such as barium titanate (BaTiO3 or BT), lead iron tungstate [Pb(Fe2/3W1/3)O3 or PFW], and several bismuth-containing materials, that cannot be directly produced from their oxide mixtures, have been formed at relatively low temperatures. Ferroelectric ceramics derived from the activated precursors demonstrated better microstructure and electrical properties than those without mechanochemical treatment. This review presents an overview of the recent progress in the synthesis of ferroelectric ceramic powders using various high-energy milling techniques. The progress includes several aspects: (i) direct synthesis of nano-sized powders with better sinterability, (ii) promoted reactive sintering due to the modification of the precursors, (iii) amorphization of the precursors, and (iv) refinement of the precursors with high homogeneity. The underlying mechanisms of mechanochemical synthesis of ferroelectric materials are discussed. Further research emphasises on issues related to the synthesis of ferroelectric ceramic powders are suggested.
author2 School of Materials Science & Engineering
author_facet School of Materials Science & Engineering
Kong, Ling Bing
Zhang, T. S.
Ma, Jan
Boey, Freddy Yin Chiang
format Article
author Kong, Ling Bing
Zhang, T. S.
Ma, Jan
Boey, Freddy Yin Chiang
author_sort Kong, Ling Bing
title Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique
title_short Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique
title_full Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique
title_fullStr Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique
title_full_unstemmed Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique
title_sort progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique
publishDate 2012
url https://hdl.handle.net/10356/93903
http://hdl.handle.net/10220/7657
_version_ 1772827494976585728