Giant enhancement of top emission from ZnO thin film by nano-patterned Pt
The authors report the enhancement of the bandgap emission from ZnO thin films by surface modification and surface plasmon cross-coupling. 12-fold and twofold enhancements of bandgap emission from the metal side of ZnO film were observed by sputtering Pt nanopattern and Pt film onto ZnO film, respec...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2010
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/93932 http://hdl.handle.net/10220/6225 http://sfxna09.hosted.exlibrisgroup.com:3410/ntu/sfxlcl3?sid=metalib:EBSCO_APH&id=doi:&genre=&isbn=&issn=00036951&date=2009&volume=95&issue=2&spage=029903&epage=&aulast=Liu&aufirst=%20K%20%20W&auinit=&title=Applied%20Physics%20Letters |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The authors report the enhancement of the bandgap emission from ZnO thin films by surface modification and surface plasmon cross-coupling. 12-fold and twofold enhancements of bandgap emission from the metal side of ZnO film were observed by sputtering Pt nanopattern and Pt film onto ZnO film, respectively. Time-resolved photoluminescence indicates that the decay time is slowed down by Pt capping, contrary to common observations. The “abnormal” phenomena are interpreted by considering both the surface modification and surface plasmon coupling. |
---|