Engineering inorganic hybrid nanoparticles : tuning combination fashions of gold, platinum, and iron oxide

Multistep colloidal chemical routes were employed to synthesize Pt/Au, Pt/iron oxide (IO), and Au/Pt/IO hybrid nanoparticles (NPs). The starting templates, Pt NPs, were synthesized by controlling the decomposition kinetics of platinum acetylacetonate in oleylamine. The morphologies of binary metal P...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhang, Hai Tao, Ding, Jun, Chow, Gan Moog, Dong, Zhili
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2011
Subjects:
Online Access:https://hdl.handle.net/10356/93980
http://hdl.handle.net/10220/7410
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Multistep colloidal chemical routes were employed to synthesize Pt/Au, Pt/iron oxide (IO), and Au/Pt/IO hybrid nanoparticles (NPs). The starting templates, Pt NPs, were synthesized by controlling the decomposition kinetics of platinum acetylacetonate in oleylamine. The morphologies of binary metal Pt/Au hybrid NPs were modulated by controllable attachment of Au nanoscale domains to Pt templates. Similarly, Pt/IO and Au/Pt/IO hybrid NPs were fabricated by the controllable attachment of Fe to the Pt or Pt/Au template NPs. The noble metal domains of as-prepared hybrid NPs had face center cubic crystal structures and did not alloy, as verified by high resolution transmission electron microscopy and X-ray diffraction spectrometry. X-ray diffraction spectrometry study indicates that the IO domains in the as-prepared NPs have a spinel structure. UV−vis study of binary metal Pt/Au hybrid NPs revealed that they have a characteristic plasmon resonance around 525 nm, while dumbbell-like Au/Pt/IO NPs had a plasmon resonance around 600 nm. Furthermore, magnetism study of the binary Pt−IO NPs clearly indicated that the interfacial interactions between Pt and IO domains could result in a shift of the blocking temperature.