Reduction of symmetric semidefinite programs using the regular representation

We consider semidefinite programming problems on which a permutation group is acting.We describe a general technique to reduce the size of such problems, exploiting the symmetry. The technique is based on a low-order matrix ∗-representation of the commutant (centralizer ring) of the matrix algebra g...

Full description

Saved in:
Bibliographic Details
Main Authors: Klerk, Etienne de., Pasechnik, Dmitrii V., Schrijver, Alexander.
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2012
Subjects:
Online Access:https://hdl.handle.net/10356/94065
http://hdl.handle.net/10220/7625
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-94065
record_format dspace
spelling sg-ntu-dr.10356-940652023-02-28T19:38:17Z Reduction of symmetric semidefinite programs using the regular representation Klerk, Etienne de. Pasechnik, Dmitrii V. Schrijver, Alexander. School of Physical and Mathematical Sciences DRNTU::Science::Mathematics We consider semidefinite programming problems on which a permutation group is acting.We describe a general technique to reduce the size of such problems, exploiting the symmetry. The technique is based on a low-order matrix ∗-representation of the commutant (centralizer ring) of the matrix algebra generated by the permutation matrices.We apply it to extending amethod of de Klerk et al. that gives a semidefinite programming lower bound to the crossing number of complete bipartite graphs. It implies that cr(K8,n) ≥ 2.9299n2−6n, cr(K9,n) ≥ 3.8676n2 − 8n, and (for any m ≥ 9) lim n→∞ cr(Km,n)/Z(m, n) ≥ 0.8594 m/m − 1, where Z(m,n) is the Zarankiewicz number [1/4(m-1)2][1/4(n-1)2], which is the conjectured value of cr(K m,n ). Here the best factor previously known was 0.8303 instead of 0.8594. Accepted version 2012-03-09T00:44:11Z 2019-12-06T18:50:14Z 2012-03-09T00:44:11Z 2019-12-06T18:50:14Z 2006 2006 Journal Article Klerk, E. d., Pasechnik, D. V. & Schrijver, A. (2006). Reduction of symmetric semidefinite programs using the regular representation. Mathematical Programming, 109, 613-624. https://hdl.handle.net/10356/94065 http://hdl.handle.net/10220/7625 10.1007/s10107-006-0039-7 en Mathematical programming © 2006 Springer-Verlag. This is the author created version of a work that has been peer reviewed and accepted for publication by Mathematical Programming, Springer-Verlag. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [DOI: http://dx.doi.org/10.1007/s10107-006-0039-7 ]. 11 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Science::Mathematics
spellingShingle DRNTU::Science::Mathematics
Klerk, Etienne de.
Pasechnik, Dmitrii V.
Schrijver, Alexander.
Reduction of symmetric semidefinite programs using the regular representation
description We consider semidefinite programming problems on which a permutation group is acting.We describe a general technique to reduce the size of such problems, exploiting the symmetry. The technique is based on a low-order matrix ∗-representation of the commutant (centralizer ring) of the matrix algebra generated by the permutation matrices.We apply it to extending amethod of de Klerk et al. that gives a semidefinite programming lower bound to the crossing number of complete bipartite graphs. It implies that cr(K8,n) ≥ 2.9299n2−6n, cr(K9,n) ≥ 3.8676n2 − 8n, and (for any m ≥ 9) lim n→∞ cr(Km,n)/Z(m, n) ≥ 0.8594 m/m − 1, where Z(m,n) is the Zarankiewicz number [1/4(m-1)2][1/4(n-1)2], which is the conjectured value of cr(K m,n ). Here the best factor previously known was 0.8303 instead of 0.8594.
author2 School of Physical and Mathematical Sciences
author_facet School of Physical and Mathematical Sciences
Klerk, Etienne de.
Pasechnik, Dmitrii V.
Schrijver, Alexander.
format Article
author Klerk, Etienne de.
Pasechnik, Dmitrii V.
Schrijver, Alexander.
author_sort Klerk, Etienne de.
title Reduction of symmetric semidefinite programs using the regular representation
title_short Reduction of symmetric semidefinite programs using the regular representation
title_full Reduction of symmetric semidefinite programs using the regular representation
title_fullStr Reduction of symmetric semidefinite programs using the regular representation
title_full_unstemmed Reduction of symmetric semidefinite programs using the regular representation
title_sort reduction of symmetric semidefinite programs using the regular representation
publishDate 2012
url https://hdl.handle.net/10356/94065
http://hdl.handle.net/10220/7625
_version_ 1759855676630237184