Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks
A computationally efficient artificial neural network (ANN) for the purpose of dynamic nonlinear system identification is proposed. The major drawback of feedforward neural networks, such as multilayer perceptrons (MLPs) trained with the backpropagation (BP) algorithm, is that they require a large a...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2011
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/94174 http://hdl.handle.net/10220/7094 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | A computationally efficient artificial neural network (ANN) for the purpose of dynamic nonlinear system identification is proposed. The major drawback of feedforward neural networks, such as multilayer perceptrons (MLPs) trained with the backpropagation (BP) algorithm, is that they require a large amount of computation for learning. We propose a single-layer functional-link ANN (FLANN) in which the need for a hidden layer is eliminated by expanding the input pattern by Chebyshev polynomials. The novelty of this network is that it requires much less computation than that of a MLP. We have shown its effectiveness in the problem of nonlinear dynamic system identification. In the presence of additive Gaussian noise, the performance of the proposed network is found to be similar or superior to that of a MLP. A performance comparison in terms of computational complexity has also been carried out. |
---|