Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks

A computationally efficient artificial neural network (ANN) for the purpose of dynamic nonlinear system identification is proposed. The major drawback of feedforward neural networks, such as multilayer perceptrons (MLPs) trained with the backpropagation (BP) algorithm, is that they require a large a...

Full description

Saved in:
Bibliographic Details
Main Authors: Kot, Alex Chichung, Patra, Jagdish Chandra
Other Authors: School of Computer Engineering
Format: Article
Language:English
Published: 2011
Subjects:
Online Access:https://hdl.handle.net/10356/94174
http://hdl.handle.net/10220/7094
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:A computationally efficient artificial neural network (ANN) for the purpose of dynamic nonlinear system identification is proposed. The major drawback of feedforward neural networks, such as multilayer perceptrons (MLPs) trained with the backpropagation (BP) algorithm, is that they require a large amount of computation for learning. We propose a single-layer functional-link ANN (FLANN) in which the need for a hidden layer is eliminated by expanding the input pattern by Chebyshev polynomials. The novelty of this network is that it requires much less computation than that of a MLP. We have shown its effectiveness in the problem of nonlinear dynamic system identification. In the presence of additive Gaussian noise, the performance of the proposed network is found to be similar or superior to that of a MLP. A performance comparison in terms of computational complexity has also been carried out.