Modeling and optimization of planar microcoils

Magnetic actuation has emerged as a useful tool for manipulating particles, droplets and biological samples in microfluidics. A planar coil is one of the suitable candidates for magnetic actuation and has the potential to be integrated in digital microfluidic devices. A simple model of microcoils is...

Full description

Saved in:
Bibliographic Details
Main Authors: Beyzavi, Ali, Nguyen, Nam-Trung
Other Authors: School of Mechanical and Aerospace Engineering
Format: Article
Language:English
Published: 2012
Subjects:
Online Access:https://hdl.handle.net/10356/94205
http://hdl.handle.net/10220/7812
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Magnetic actuation has emerged as a useful tool for manipulating particles, droplets and biological samples in microfluidics. A planar coil is one of the suitable candidates for magnetic actuation and has the potential to be integrated in digital microfluidic devices. A simple model of microcoils is needed to optimize their use in actuation applications. This paper first develops an analytical model for calculating the magnetic field of a planar microcoil. The model was validated by experimental data from microcoils fabricated on printed circuit boards (PCB). The model was used for calculating the field strength and the force acting on a magnetic object. Finally, the effect of different coil parameters such as the magnitude of the electric current, the gap between the wires and the number of wire segments is discussed. Both analytical and experimental results show that a smaller gap size between wire segments, more wire segments and a higher electric current can increase both the magnitude and the gradient of the magnetic field, and consequently cause a higher actuating force. The planar coil analyzed in the paper is suitable for applications in magnetic droplet-based microfluidics.