Microdroplet formation of water and nanofluids in heat-induced microfluidic T-junction

This paper reports experimental investigations on the droplet formation and size manipulation of deionized water (DIW) and nanofluids in a microfluidic T-junction at different temperatures. Investigations of the effect of microchannel depths on the droplet formation process showed that the smaller t...

Full description

Saved in:
Bibliographic Details
Main Authors: Murshed, S. M. Sohel, Tan, Say-Hwa, Nguyen, Nam-Trung, Wong, Teck Neng, Yobas, Levent
Other Authors: School of Mechanical and Aerospace Engineering
Format: Article
Language:English
Published: 2012
Subjects:
Online Access:https://hdl.handle.net/10356/94206
http://hdl.handle.net/10220/7874
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:This paper reports experimental investigations on the droplet formation and size manipulation of deionized water (DIW) and nanofluids in a microfluidic T-junction at different temperatures. Investigations of the effect of microchannel depths on the droplet formation process showed that the smaller the depth of the channel the larger the increase of droplet size with temperature. Sample nanofluids were prepared by dispersing 0.1 volume percentage of titanium dioxide (TiO2) nanoparticles of 15 nm and 10 nm × 40 nm in DIW for their droplet formation experiments. The heater temperature also affects the droplet formation process. Present results demonstrate that nanofluids exhibit different characteristics in droplet formation with the temperature. Addition of spherical-shaped TiO2 (15 nm) nanoparticles in DIW results in much smaller droplet size compared to the cylindrical-shaped TiO2 (10 nm × 40 nm) nanoparticles. Besides changing the interfacial properties of based fluid, nanoparticles can influence the droplet formation of nanofluids by introducing interfacial slip at the interface. Other than nanofluid with cylindrical-shaped nanoparticles, the droplet size was found to increase with increasing temperature.