Reliability-based long term hydro/thermal reserve allocation of power systems with high wind power penetration
In a power system with high wind power penetration, reserve allocation is a major problem of system planning and operation due to the uncertainty and fast fluctuation of wind speeds. In order to achieve long term sustainable solution for electricity supply, the impacts of the installation of wind fa...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2011
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/94291 http://hdl.handle.net/10220/7169 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-94291 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-942912020-04-22T08:31:28Z Reliability-based long term hydro/thermal reserve allocation of power systems with high wind power penetration Andrew, M. Wang, Peng Goel, Lalit Ding, Yi Loh, Poh Chiang School of Electrical and Electronic Engineering Power and Energy Society General Meeting (2009 : Calgary, USA) DRNTU::Engineering::Electrical and electronic engineering::Electric power::Production, transmission and distribution In a power system with high wind power penetration, reserve allocation is a major problem of system planning and operation due to the uncertainty and fast fluctuation of wind speeds. In order to achieve long term sustainable solution for electricity supply, the impacts of the installation of wind farms on system reliability have to be carefully studied. This paper describes the impact of installation of wind farms on the system reserve and reliability from a long term planning point of view. A multi-state wind farm model and a multi-state load model are combined using universal generating function (UGF) to simulate the fluctuation of wind speed, reliability of wind turbine generators and uncertainty of load. A reliability-based hydro/thermal reserve allocation method is proposed to determine the conventional reserve required for power systems with high wind power penetration. The IEEE-RBTS has been modified to illustrate the applications of the proposed method. Accepted version 2011-10-06T05:56:47Z 2019-12-06T18:53:44Z 2011-10-06T05:56:47Z 2019-12-06T18:53:44Z 2009 2009 Conference Paper Wang, P., Goel, L., Ding, Y., Loh, P. C,. & Andrew, M. (2009). Reliability-based long term hydro/thermal reserve allocation of power systems with high wind power penetration. Power & Energy Society General Meeting. https://hdl.handle.net/10356/94291 http://hdl.handle.net/10220/7169 10.1109/PES.2009.5275326 en Copyright 2009 IEEE. 7 p. |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Electrical and electronic engineering::Electric power::Production, transmission and distribution |
spellingShingle |
DRNTU::Engineering::Electrical and electronic engineering::Electric power::Production, transmission and distribution Andrew, M. Wang, Peng Goel, Lalit Ding, Yi Loh, Poh Chiang Reliability-based long term hydro/thermal reserve allocation of power systems with high wind power penetration |
description |
In a power system with high wind power penetration, reserve allocation is a major problem of system planning and operation due to the uncertainty and fast fluctuation of wind speeds. In order to achieve long term sustainable solution for electricity supply, the impacts of the installation of wind farms on system reliability have to be carefully studied. This paper describes the impact of installation of wind farms on the system reserve and reliability from a long term planning point of view. A multi-state wind farm model and a multi-state load model are combined using universal generating function (UGF) to simulate the fluctuation of wind speed, reliability of wind turbine generators and uncertainty of load. A reliability-based hydro/thermal reserve allocation method is proposed to determine the conventional reserve required for power systems with high wind power penetration. The IEEE-RBTS has been modified to illustrate the applications of the proposed method. |
author2 |
School of Electrical and Electronic Engineering |
author_facet |
School of Electrical and Electronic Engineering Andrew, M. Wang, Peng Goel, Lalit Ding, Yi Loh, Poh Chiang |
format |
Conference or Workshop Item |
author |
Andrew, M. Wang, Peng Goel, Lalit Ding, Yi Loh, Poh Chiang |
author_sort |
Andrew, M. |
title |
Reliability-based long term hydro/thermal reserve allocation of power systems with high wind power penetration |
title_short |
Reliability-based long term hydro/thermal reserve allocation of power systems with high wind power penetration |
title_full |
Reliability-based long term hydro/thermal reserve allocation of power systems with high wind power penetration |
title_fullStr |
Reliability-based long term hydro/thermal reserve allocation of power systems with high wind power penetration |
title_full_unstemmed |
Reliability-based long term hydro/thermal reserve allocation of power systems with high wind power penetration |
title_sort |
reliability-based long term hydro/thermal reserve allocation of power systems with high wind power penetration |
publishDate |
2011 |
url |
https://hdl.handle.net/10356/94291 http://hdl.handle.net/10220/7169 |
_version_ |
1681057616721084416 |