Generation of dual patterns of metal oxide nanomaterials based on seed-mediated selective growth

A facile route for the generation of the dual patterns of metal oxide nanomaterials, for example, ZnO and CuO, has been developed by printing the oxide seeds through a combination of microcontact printing (μCP) and microfluidic (μF) techniques, followed by the simultaneous growth of the two metal ox...

Full description

Saved in:
Bibliographic Details
Main Authors: Yin, Zongyou, He, Qiyuan, Huang, Xiao, Lu, Gang, Hng, Huey Hoon, Chen, Hongyu, Xue, Can, Yan, Qingyu, Zhang, Qichun, Boey, Freddy Yin Chiang, Zhang, Hua
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2012
Subjects:
Online Access:https://hdl.handle.net/10356/94401
http://hdl.handle.net/10220/8536
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:A facile route for the generation of the dual patterns of metal oxide nanomaterials, for example, ZnO and CuO, has been developed by printing the oxide seeds through a combination of microcontact printing (μCP) and microfluidic (μF) techniques, followed by the simultaneous growth of the two metal oxide nanomaterials in a one-step solution reaction based on hydrothermal, seed-mediated selective growth. The obtained dual patterns of ZnO nanorods and CuO nanoneedles show a sharp boundary between them, indicating well-defined dual-pattern generation. Also, the simultaneous growth of metal oxide nanomaterials is highly material-selective for the specific seeds prepatterned on substrates, resulting in the selective growth of ZnO nanorods and CuO nanoneedles on the ZnO and CuO seeds, respectively. Moreover, the generation of high-quality dual patterns has been similarly realized on a flexible poly(ethylene terephthalate) (PET) wafer. This study demonstrates the well-controlled hydrothermal growth of different metal oxide nanomaterials in the same reaction solution on the preprinted oxide seeds on the target substrates. It opens up an avenue to develop multifunctional devices of different metal oxides with the combination of μCP and μF techniques.