Kinking-induced structural evolution of metal oxide nanowires into single-crystalline nanorings
We report an innovative method to fabricate single-crystalline nanorings based on the conventional vapor−liquid−solid (VLS) mechanism. The controllable formation of kinks in functional oxide nanowires (NWs) can be employed to fold the VLS-grown NWs into closed ring-shaped nanostructures. Successful...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2012
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/94517 http://hdl.handle.net/10220/8516 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We report an innovative method to fabricate single-crystalline nanorings based on the conventional vapor−liquid−solid (VLS) mechanism. The controllable formation of kinks in functional oxide nanowires (NWs) can be employed to fold the VLS-grown NWs into closed ring-shaped nanostructures. Successful syntheses of single-crystalline In2O3 and Zn2GeO4 nanorings were demonstrated. The present work provides an efficient method for nanoring fabrication based on NWs. The functional metal oxide nanomaterials with unique ring-shaped structures are expected to find interesting applications such as wave-guiding and photonic circuits. |
---|