Kinking-induced structural evolution of metal oxide nanowires into single-crystalline nanorings

We report an innovative method to fabricate single-crystalline nanorings based on the conventional vapor−liquid−solid (VLS) mechanism. The controllable formation of kinks in functional oxide nanowires (NWs) can be employed to fold the VLS-grown NWs into closed ring-shaped nanostructures. Successful...

Full description

Saved in:
Bibliographic Details
Main Authors: Yan, Chaoyi, Singh, Nandan, Lee, Pooi See
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2012
Subjects:
Online Access:https://hdl.handle.net/10356/94517
http://hdl.handle.net/10220/8516
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:We report an innovative method to fabricate single-crystalline nanorings based on the conventional vapor−liquid−solid (VLS) mechanism. The controllable formation of kinks in functional oxide nanowires (NWs) can be employed to fold the VLS-grown NWs into closed ring-shaped nanostructures. Successful syntheses of single-crystalline In2O3 and Zn2GeO4 nanorings were demonstrated. The present work provides an efficient method for nanoring fabrication based on NWs. The functional metal oxide nanomaterials with unique ring-shaped structures are expected to find interesting applications such as wave-guiding and photonic circuits.