Finite nilpotent and metacyclic groups never violate the Ingleton inequality

In [5], Mao and Hassibi started the study of finite groups that violate the Ingleton inequality. They found through computer search that the smallest group that does violate it is the symmetric group of order 120. We give a general condition that proves that a group does not violate the Ingleton ine...

Full description

Saved in:
Bibliographic Details
Main Authors: Stancu, Radu, Oggier, Frederique
Other Authors: School of Physical and Mathematical Sciences
Format: Conference or Workshop Item
Language:English
Published: 2012
Subjects:
Online Access:https://hdl.handle.net/10356/94796
http://hdl.handle.net/10220/8415
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:In [5], Mao and Hassibi started the study of finite groups that violate the Ingleton inequality. They found through computer search that the smallest group that does violate it is the symmetric group of order 120. We give a general condition that proves that a group does not violate the Ingleton inequality, and consequently deduce that finite nilpotent and metacyclic groups never violate the inequality. In particular, out of the groups of order up to 120, we give a proof that about 100 orders cannot provide groups which violate the Ingleton inequality.