Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH)·0.11H2O and their lithium-storage properties

In this work, a novel hydrothermal route is developed to synthesize cobalt carbonate hydroxide, Co(CO3)0.5(OH)·0.11H2O. In this method, sodium chloride salt is utilized to organize single-crystalline nanowires into a chrysanthemum-like hierarchical assembly. The morphological evolution process of th...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiong, Shenglin, Chen, Jun Song, Lou, David Xiong Wen, Zeng, Hua Chun
Other Authors: School of Chemical and Biomedical Engineering
Format: Article
Language:English
Published: 2012
Subjects:
Online Access:https://hdl.handle.net/10356/94937
http://hdl.handle.net/10220/7729
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-94937
record_format dspace
spelling sg-ntu-dr.10356-949372020-03-07T11:35:34Z Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH)·0.11H2O and their lithium-storage properties Xiong, Shenglin Chen, Jun Song Lou, David Xiong Wen Zeng, Hua Chun School of Chemical and Biomedical Engineering DRNTU::Science::Medicine::Biomedical engineering In this work, a novel hydrothermal route is developed to synthesize cobalt carbonate hydroxide, Co(CO3)0.5(OH)·0.11H2O. In this method, sodium chloride salt is utilized to organize single-crystalline nanowires into a chrysanthemum-like hierarchical assembly. The morphological evolution process of this organized product is investigated by examining different reaction intermediates during the synthesis. The growth and thus the final assembly of the Co(CO3)0.5(OH)·0.11H2O can be finely tuned by selecting preparative parameters, such as the molar ratio of the starting chemicals, the additives, the reaction time and the temperature. Using the flower-like Co(CO3)0.5(OH)·0.11H2O as a solid precursor, quasi-single-crystalline mesoporous Co3O4 nanowire arrays are prepared via thermal decomposition in air. Furthermore, carbon can be added onto the spinel oxide by a chemical-vapor-deposition method using acetylene, which leads to the generation of carbon-sheathed CoO nanowire arrays (CoO@C). Through comparing and analyzing the crystal structures, the resultant products and their high crystallinity can be explained by a sequential topotactic transformation of the respective precursors. The electrochemical performances of the typical cobalt oxide products are also evaluated. It is demonstrated that tuning of the surface texture and the pore size of the Co3O4 products is very important in lithium-ion-battery applications. The carbon-decorated CoO nanowire arrays exhibit an excellent cyclic performance with nearly 100% capacity retention in a testing range of 70 cycles. Therefore, this CoO@C nanocomposite can be considered to be an attractive candidate as an anode material for further investigation. 2012-04-11T08:03:15Z 2019-12-06T19:05:03Z 2012-04-11T08:03:15Z 2019-12-06T19:05:03Z 2012 2012 Journal Article Xiong, S. L., Chen, J. S., Lou, X. W., & Zeng, H. C. (2012). Mesoporous Co3O4 and CoO@C Topotactically Transformed from Chrysanthemum-like Co(CO3)0.5(OH)·0.11H2O and Their Lithium-Storage Properties. Advanced Functional Materials, 22(4), 861-871. https://hdl.handle.net/10356/94937 http://hdl.handle.net/10220/7729 10.1002/adfm.201102192 en Advanced functional materials © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
institution Nanyang Technological University
building NTU Library
country Singapore
collection DR-NTU
language English
topic DRNTU::Science::Medicine::Biomedical engineering
spellingShingle DRNTU::Science::Medicine::Biomedical engineering
Xiong, Shenglin
Chen, Jun Song
Lou, David Xiong Wen
Zeng, Hua Chun
Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH)·0.11H2O and their lithium-storage properties
description In this work, a novel hydrothermal route is developed to synthesize cobalt carbonate hydroxide, Co(CO3)0.5(OH)·0.11H2O. In this method, sodium chloride salt is utilized to organize single-crystalline nanowires into a chrysanthemum-like hierarchical assembly. The morphological evolution process of this organized product is investigated by examining different reaction intermediates during the synthesis. The growth and thus the final assembly of the Co(CO3)0.5(OH)·0.11H2O can be finely tuned by selecting preparative parameters, such as the molar ratio of the starting chemicals, the additives, the reaction time and the temperature. Using the flower-like Co(CO3)0.5(OH)·0.11H2O as a solid precursor, quasi-single-crystalline mesoporous Co3O4 nanowire arrays are prepared via thermal decomposition in air. Furthermore, carbon can be added onto the spinel oxide by a chemical-vapor-deposition method using acetylene, which leads to the generation of carbon-sheathed CoO nanowire arrays (CoO@C). Through comparing and analyzing the crystal structures, the resultant products and their high crystallinity can be explained by a sequential topotactic transformation of the respective precursors. The electrochemical performances of the typical cobalt oxide products are also evaluated. It is demonstrated that tuning of the surface texture and the pore size of the Co3O4 products is very important in lithium-ion-battery applications. The carbon-decorated CoO nanowire arrays exhibit an excellent cyclic performance with nearly 100% capacity retention in a testing range of 70 cycles. Therefore, this CoO@C nanocomposite can be considered to be an attractive candidate as an anode material for further investigation.
author2 School of Chemical and Biomedical Engineering
author_facet School of Chemical and Biomedical Engineering
Xiong, Shenglin
Chen, Jun Song
Lou, David Xiong Wen
Zeng, Hua Chun
format Article
author Xiong, Shenglin
Chen, Jun Song
Lou, David Xiong Wen
Zeng, Hua Chun
author_sort Xiong, Shenglin
title Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH)·0.11H2O and their lithium-storage properties
title_short Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH)·0.11H2O and their lithium-storage properties
title_full Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH)·0.11H2O and their lithium-storage properties
title_fullStr Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH)·0.11H2O and their lithium-storage properties
title_full_unstemmed Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH)·0.11H2O and their lithium-storage properties
title_sort mesoporous co3o4 and coo@c topotactically transformed from chrysanthemum-like co(co3)0.5(oh)·0.11h2o and their lithium-storage properties
publishDate 2012
url https://hdl.handle.net/10356/94937
http://hdl.handle.net/10220/7729
_version_ 1681048986593525760