Controlled synthesis of CdE (E=S, Se and Te) nanowires

This work focused on a catalyst-free solution-based method to synthesize single-crystal CdE (E = S, Se and Te) nanowires. Using the hot coordinating solvents method, we have successfully synthesized high aspect ratio CdE nanowires. In this paper, we present our very recent results on the synthesis o...

全面介紹

Saved in:
書目詳細資料
Main Authors: Xi, Lifei, Chua, Kheng Hwee, Zhao, Yanyuan, Zhang, Jun, Xiong, Qihua, Lam, Yeng Ming
其他作者: School of Materials Science & Engineering
格式: Article
語言:English
出版: 2012
主題:
在線閱讀:https://hdl.handle.net/10356/94972
http://hdl.handle.net/10220/8297
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:This work focused on a catalyst-free solution-based method to synthesize single-crystal CdE (E = S, Se and Te) nanowires. Using the hot coordinating solvents method, we have successfully synthesized high aspect ratio CdE nanowires. In this paper, we present our very recent results on the synthesis of CdTe nanowires and summarize our understanding of the effect of reaction parameters on the growth of CdE nanowires. The reaction parameters include ligands for Cd-complexes and E-complexes, ligand-to-Cd mole ratio, Cd-to-E mole ratio, precursor concentration, reaction temperature and the injection process. We propose the optimum conditions for the growth of CdE nanocrystals with a large aspect ratio. Possible growth mechanisms were also investigated using time-dependent studies. Furthermore, a Raman study shows a higher concentration of tellurium on the surface of CdTe nanowires. This is understandable because the free energy of Te is smaller than that of CdTe and thus Te crystals can easily form during the synthesis. Our high aspect-ratio nanowires have good dispersibility and exhibit huge potential applications in areas such as solution processed photovoltaic cells and transistors.