Impact of radar-rainfall error structure on estimated flood magnitude across scales : an investigation based on a parsimonious distributed hydrological model
The goal of this study is to diagnose the manner in which radar-rainfall input affects peak flow simulation uncertainties across scales. We used the distributed physically based hydrological model CUENCAS with parameters that are estimated from available data and without fitting the model output to...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
2012
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/95165 http://hdl.handle.net/10220/8806 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-95165 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-951652020-09-26T21:28:36Z Impact of radar-rainfall error structure on estimated flood magnitude across scales : an investigation based on a parsimonious distributed hydrological model Cunha, Luciana K. Mandapaka, Pradeep V. Krajewski, Witold F. Mantilla, Ricardo. Bradley, Allen A. DRNTU::Science::Geology The goal of this study is to diagnose the manner in which radar-rainfall input affects peak flow simulation uncertainties across scales. We used the distributed physically based hydrological model CUENCAS with parameters that are estimated from available data and without fitting the model output to discharge observations. We evaluated the model's performance using (1) observed streamflow at the outlet of nested basins ranging in scale from 20 to 16,000 km2 and (2) streamflow simulated by a well-established and extensively calibrated hydrological model used by the US National Weather Service (SAC-SMA). To mimic radar-rainfall uncertainty, we applied a recently proposed statistical model of radar-rainfall error to produce rainfall ensembles based on different expected error scenarios. We used the generated ensembles as input for the hydrological model and summarized the effects on flow sensitivities using a relative measure of the ensemble peak flow dispersion for every link in the river network. Results show that peak flow simulation uncertainty is strongly dependent on the catchment scale. Uncertainty decreases with increasing catchment drainage area due to the aggregation effect of the river network that filters out small-scale uncertainties. The rate at which uncertainty changes depends on the error structure of the input rainfall fields. We found that random errors that are uncorrelated in space produce high peak flow variability for small scale basins, but uncertainties decrease rapidly as scale increases. In contrast, spatially correlated errors produce less scatter in peak flows for small scales, but uncertainty decreases slowly with increasing catchment size. This study demonstrates the large impact of scale on uncertainty in hydrological simulations and demonstrates the need for a more robust characterization of the uncertainty structure in radar-rainfall. Our results are diagnostic and illustrate the benefits of using the calibration-free, multiscale framework to investigate uncertainty propagation with hydrological models. Published version 2012-10-29T01:37:55Z 2019-12-06T19:09:27Z 2012-10-29T01:37:55Z 2019-12-06T19:09:27Z 2012 2012 Journal Article Cunha, L. K., Mandapaka, P. V., Krajewski, W. F., Mantilla, R., & Bradley, A. A. (2012). Impact of radar-rainfall error structure on estimated flood magnitude across scales: an investigation based on a parsimonious distributed hydrological model. Water Resources Research, 48. 0043-1397 https://hdl.handle.net/10356/95165 http://hdl.handle.net/10220/8806 10.1029/2012WR012138 en Water resources research © 2012 American Geophysical Union. This paper was published in Water Resources Research and is made available as an electronic reprint (preprint) with permission of American Geophysical Union. The paper can be found at the following official URL: [http://dx.doi.org/10.1029/2012WR012138]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Science::Geology |
spellingShingle |
DRNTU::Science::Geology Cunha, Luciana K. Mandapaka, Pradeep V. Krajewski, Witold F. Mantilla, Ricardo. Bradley, Allen A. Impact of radar-rainfall error structure on estimated flood magnitude across scales : an investigation based on a parsimonious distributed hydrological model |
description |
The goal of this study is to diagnose the manner in which radar-rainfall input affects peak flow simulation uncertainties across scales. We used the distributed physically based hydrological model CUENCAS with parameters that are estimated from available data and without fitting the model output to discharge observations. We evaluated the model's performance using (1) observed streamflow at the outlet of nested basins ranging in scale from 20 to 16,000 km2 and (2) streamflow simulated by a well-established and extensively calibrated hydrological model used by the US National Weather Service (SAC-SMA). To mimic radar-rainfall uncertainty, we applied a recently proposed statistical model of radar-rainfall error to produce rainfall ensembles based on different expected error scenarios. We used the generated ensembles as input for the hydrological model and summarized the effects on flow sensitivities using a relative measure of the ensemble peak flow dispersion for every link in the river network. Results show that peak flow simulation uncertainty is strongly dependent on the catchment scale. Uncertainty decreases with increasing catchment drainage area due to the aggregation effect of the river network that filters out small-scale uncertainties. The rate at which uncertainty changes depends on the error structure of the input rainfall fields. We found that random errors that are uncorrelated in space produce high peak flow variability for small scale basins, but uncertainties decrease rapidly as scale increases. In contrast, spatially correlated errors produce less scatter in peak flows for small scales, but uncertainty decreases slowly with increasing catchment size. This study demonstrates the large impact of scale on uncertainty in hydrological simulations and demonstrates the need for a more robust characterization of the uncertainty structure in radar-rainfall. Our results are diagnostic and illustrate the benefits of using the calibration-free, multiscale framework to investigate uncertainty propagation with hydrological models. |
format |
Article |
author |
Cunha, Luciana K. Mandapaka, Pradeep V. Krajewski, Witold F. Mantilla, Ricardo. Bradley, Allen A. |
author_facet |
Cunha, Luciana K. Mandapaka, Pradeep V. Krajewski, Witold F. Mantilla, Ricardo. Bradley, Allen A. |
author_sort |
Cunha, Luciana K. |
title |
Impact of radar-rainfall error structure on estimated flood magnitude across scales : an investigation based on a parsimonious distributed hydrological model |
title_short |
Impact of radar-rainfall error structure on estimated flood magnitude across scales : an investigation based on a parsimonious distributed hydrological model |
title_full |
Impact of radar-rainfall error structure on estimated flood magnitude across scales : an investigation based on a parsimonious distributed hydrological model |
title_fullStr |
Impact of radar-rainfall error structure on estimated flood magnitude across scales : an investigation based on a parsimonious distributed hydrological model |
title_full_unstemmed |
Impact of radar-rainfall error structure on estimated flood magnitude across scales : an investigation based on a parsimonious distributed hydrological model |
title_sort |
impact of radar-rainfall error structure on estimated flood magnitude across scales : an investigation based on a parsimonious distributed hydrological model |
publishDate |
2012 |
url |
https://hdl.handle.net/10356/95165 http://hdl.handle.net/10220/8806 |
_version_ |
1681057200568532992 |