Experimental study on catenary action of RC beam-column subassemblages

Catenary action is considered as the last defense of a structure to mitigate progressive collapse, provided that the remaining structure after an initial damage can develop alternate load paths and a large deformation has occurred in the affected beams and slabs. As a result, catenary action require...

Full description

Saved in:
Bibliographic Details
Main Authors: Yu, Jun, Tan, Kang Hai
Other Authors: School of Civil and Environmental Engineering
Format: Conference or Workshop Item
Language:English
Published: 2013
Subjects:
Online Access:https://hdl.handle.net/10356/95167
http://hdl.handle.net/10220/9437
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-95167
record_format dspace
spelling sg-ntu-dr.10356-951672019-12-06T19:09:29Z Experimental study on catenary action of RC beam-column subassemblages Yu, Jun Tan, Kang Hai School of Civil and Environmental Engineering International fib Congress incorporating the PCI Annual Convention and Bridge Conference (3rd : 2010) DRNTU::Engineering::Civil engineering Catenary action is considered as the last defense of a structure to mitigate progressive collapse, provided that the remaining structure after an initial damage can develop alternate load paths and a large deformation has occurred in the affected beams and slabs. As a result, catenary action requires high continuity and ductility of joints. To investigate whether current RC structures designed according to ACI 318-05 could develop catenary action under column removal scenarios, two one-half scaled beam-column sub-assemblages with seismic and non-seismic detailing were designed and tested to complete failure, i.e. rebar fracture. The sub-assemblage consists of two end column stubs, a two-bay beam, and one middle beam-column joint at the junction of two single-bay beams. To ensure sufficient horizontal resistance, the sizes of end columns were enlarged to be rather stiff. To simplify the boundary conditions in the first batch of tests of our ongoing project and to make the test system statically determinate, two end column stubs were supported onto two horizontal restraints and one vertical restraint to simulate the encased supports. A concentrated load was applied vertically by a hydraulic actuator on the top of the middle joint using displacement control until the whole system eventually failed. The loading rate was controlled manually to simulate quasi-static structural behavior. The study provided insight not only into catenary action of sub-assemblages, but also the performance and failure mode of the middle joints, as well as the influence of two different detailing requirements. During the whole loading history, the cross-sectional internal forces at any beam locations can be evaluated according to the measured reaction forces. Finally, a simple analytical model will be used to check the mechanism of catenary action. Accepted version 2013-04-02T08:37:25Z 2019-12-06T19:09:29Z 2013-04-02T08:37:25Z 2019-12-06T19:09:29Z 2010 2010 Conference Paper Yu, J., & Tan, K. H. (2010). Experimental study on catenary action of RC beam-column subassemblages. Third International fib Congress incorporating the PCI Annual Convention and Bridge Conference 2010, 1, pp.2020-2033. https://hdl.handle.net/10356/95167 http://hdl.handle.net/10220/9437 en © 2010 Precast Prestressed Concrete Institute. This is the author created version of a work that has been peer reviewed and accepted for publication by Third International fib Congress incorporating the PCI Annual Convention and Bridge Conference, Precast Prestressed Concrete Institute. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://www.proceedings.com/11604.html]. application/pdf
institution Nanyang Technological University
building NTU Library
country Singapore
collection DR-NTU
language English
topic DRNTU::Engineering::Civil engineering
spellingShingle DRNTU::Engineering::Civil engineering
Yu, Jun
Tan, Kang Hai
Experimental study on catenary action of RC beam-column subassemblages
description Catenary action is considered as the last defense of a structure to mitigate progressive collapse, provided that the remaining structure after an initial damage can develop alternate load paths and a large deformation has occurred in the affected beams and slabs. As a result, catenary action requires high continuity and ductility of joints. To investigate whether current RC structures designed according to ACI 318-05 could develop catenary action under column removal scenarios, two one-half scaled beam-column sub-assemblages with seismic and non-seismic detailing were designed and tested to complete failure, i.e. rebar fracture. The sub-assemblage consists of two end column stubs, a two-bay beam, and one middle beam-column joint at the junction of two single-bay beams. To ensure sufficient horizontal resistance, the sizes of end columns were enlarged to be rather stiff. To simplify the boundary conditions in the first batch of tests of our ongoing project and to make the test system statically determinate, two end column stubs were supported onto two horizontal restraints and one vertical restraint to simulate the encased supports. A concentrated load was applied vertically by a hydraulic actuator on the top of the middle joint using displacement control until the whole system eventually failed. The loading rate was controlled manually to simulate quasi-static structural behavior. The study provided insight not only into catenary action of sub-assemblages, but also the performance and failure mode of the middle joints, as well as the influence of two different detailing requirements. During the whole loading history, the cross-sectional internal forces at any beam locations can be evaluated according to the measured reaction forces. Finally, a simple analytical model will be used to check the mechanism of catenary action.
author2 School of Civil and Environmental Engineering
author_facet School of Civil and Environmental Engineering
Yu, Jun
Tan, Kang Hai
format Conference or Workshop Item
author Yu, Jun
Tan, Kang Hai
author_sort Yu, Jun
title Experimental study on catenary action of RC beam-column subassemblages
title_short Experimental study on catenary action of RC beam-column subassemblages
title_full Experimental study on catenary action of RC beam-column subassemblages
title_fullStr Experimental study on catenary action of RC beam-column subassemblages
title_full_unstemmed Experimental study on catenary action of RC beam-column subassemblages
title_sort experimental study on catenary action of rc beam-column subassemblages
publishDate 2013
url https://hdl.handle.net/10356/95167
http://hdl.handle.net/10220/9437
_version_ 1681045554575966208