Abelian Manna model in three dimensions and below
The Abelian Manna model of self-organized criticality is studied on various three-dimensional and fractal lattices. The exponents for avalanche size, duration, and area distribution of the model are obtained by using a high-accuracy moment analysis. Together with earlier results on lower-dimensional...
محفوظ في:
المؤلفون الرئيسيون: | , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2013
|
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/95175 http://hdl.handle.net/10220/9156 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | The Abelian Manna model of self-organized criticality is studied on various three-dimensional and fractal lattices. The exponents for avalanche size, duration, and area distribution of the model are obtained by using a high-accuracy moment analysis. Together with earlier results on lower-dimensional lattices, the present results reinforce the notion of universality below the upper critical dimension and allow us to determine the coefficients of an ε expansion. By rescaling the critical exponents by the lattice dimension and incorporating the random walker dimension, a remarkable relation is observed, satisfied by both regular and fractal lattices. |
---|