A generalized regularized phase tracker for demodulation of a single fringe pattern
The regularized phase tracker (RPT) is one of the most powerful approaches for demodulation of a single fringe pattern. However, two disadvantages limit the applications of the RPT in practice. One is the necessity of a normalized fringe pattern as input and the other is the sensitivity to critical...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/95217 http://hdl.handle.net/10220/9308 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The regularized phase tracker (RPT) is one of the most powerful approaches for demodulation of a single fringe pattern. However, two disadvantages limit the applications of the RPT in practice. One is the necessity of a normalized fringe pattern as input and the other is the sensitivity to critical points. To overcome these two disadvantages, a generalized regularized phase tracker (GRPT) is presented. The GRPT is characterized by two novel improvements. First, a general local fringe model that includes a linear background, a linear modulation and a quadratic phase is adopted in the proposed enhanced cost function. Second, the number of iterations in the optimization process is proposed as a comprehensive measure of fringe quality and used to guide the demodulation path. With these two improvements, the GRPT can directly demodulate a single fringe pattern without any pre-processing and post-processing and successfully get rid of the problem of the sensitivity to critical points. Simulation and experimental results are presented to demonstrate the effectiveness and robustness of the GRPT. |
---|