Iron-phthalocyanine molecular junction with high spin filter efficiency and negative differential resistance
We investigate the spin transport properties of iron-phthalocyanine (FePc) molecule sandwiched between two N-doped graphene nanoribbons (GNRs) based on the density functional theory and nonequilibrium Green's function methods. Our calculated results clearly reveal that the FePc molecular juncti...
Saved in:
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/95241 http://hdl.handle.net/10220/9314 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We investigate the spin transport properties of iron-phthalocyanine (FePc) molecule sandwiched between two N-doped graphene nanoribbons (GNRs) based on the density functional theory and nonequilibrium Green's function methods. Our calculated results clearly reveal that the FePc molecular junction has high spin-filter efficiency as well as negative differential resistance (NDR). The zero-bias conductance through FePc molecule is dominated by the spin-down electrons, and the observed NDR originates from the bias-dependent effective coupling between the FePc molecular orbitals and the narrow density of states of electrodes. The remarkable high spin-filter efficiency and NDR are robust regardless of the edge shape and the width of GNRs, and the N-doping site in GNRs. These predictions indicate that FePc junction holds great promise in molecular electronics and spintronics applications. |
---|