On the number of inductively minimal geometries
We count the number of inductively minimal geometries for any given rank by exhibiting a correspondence between the inductively minimal geometries of rank n and the trees with n+1 vertices. The proof of this correspondence uses the van Rooij–Wilf characterization of line graphs (see [11]).
Saved in:
Main Authors: | , , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2013
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/95261 http://hdl.handle.net/10220/9272 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
總結: | We count the number of inductively minimal geometries for any given rank by exhibiting a correspondence between the inductively minimal geometries of rank n and the trees with n+1 vertices. The proof of this correspondence uses the van Rooij–Wilf characterization of line graphs (see [11]). |
---|