The evolution of dip-pen nanolithography

The ability to tailor the chemical composition and structure of a surface on the 1–100 nm length scale is important to researchers studying topics ranging from electronic conduction, to catalysis, to biological recognition in nanoscale systems. Dip-pen nanolithography (DPN) is a new scanning-probe b...

Full description

Saved in:
Bibliographic Details
Main Authors: Ginger, David S., Mirkin, Chad A., Zhang, Hua
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2012
Subjects:
Online Access:https://hdl.handle.net/10356/95269
http://hdl.handle.net/10220/8575
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The ability to tailor the chemical composition and structure of a surface on the 1–100 nm length scale is important to researchers studying topics ranging from electronic conduction, to catalysis, to biological recognition in nanoscale systems. Dip-pen nanolithography (DPN) is a new scanning-probe based direct-write tool for generating such surface-patterned chemical functionality on the sub-100 nm length-scale, and it is a technique that is accessible to any researcher who can use an atomic force microscope. This article introduces DPN and reviews the rapid growth of the field of DPN-related research over the past few years. Topics covered range from the development of new classes of DPN-compatible chemistry, to experimental and theoretical advances in the understanding of the processes controlling tip–substrate ink transport, to the implementation of micro-electro-mechanical system (MEMS) based strategies for parallel DPN applications.