Probabilistic response evaluation for RC flexural members subjected to blast loadings

The probabilistic responses of the maximum displacement and displacement ductility factor for a reinforced concrete (RC) flexural member against potential blast loadings are evaluated through a nonlinear dynamic analysis of its equivalent single-degree-of-freedom (SDOF)...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Rong, Hai-Cheng., Li, Bing.
مؤلفون آخرون: School of Civil and Environmental Engineering
التنسيق: مقال
اللغة:English
منشور في: 2012
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/95281
http://hdl.handle.net/10220/8372
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:The probabilistic responses of the maximum displacement and displacement ductility factor for a reinforced concrete (RC) flexural member against potential blast loadings are evaluated through a nonlinear dynamic analysis of its equivalent single-degree-of-freedom (SDOF) system. Monte-Carlo simulation is used in the analysis. Some differences are observed between the actual responses of the RC member and those of the equivalent SDOF system due to the complex behaviours of reinforced concrete structural members under blast conditions. Two non-dimensional indices are defined to quantify the differences and their expressions are generated through a large amount of numerical and statistical analyses. The approach of utilizing the indices into a probabilistic response assessment of RC flexural members accounting for different kinds of uncertainties is illustrated via four numerical examples which are verified through nonlinear dynamic finite element analysis. It is concluded that the probabilistic response of RC flexural members obtained from the developed approach have a similar distribution with those from probabilistic nonlinear finite element analysis.