Probabilistic response evaluation for RC flexural members subjected to blast loadings

The probabilistic responses of the maximum displacement and displacement ductility factor for a reinforced concrete (RC) flexural member against potential blast loadings are evaluated through a nonlinear dynamic analysis of its equivalent single-degree-of-freedom (SDOF)...

Full description

Saved in:
Bibliographic Details
Main Authors: Rong, Hai-Cheng., Li, Bing.
Other Authors: School of Civil and Environmental Engineering
Format: Article
Language:English
Published: 2012
Subjects:
Online Access:https://hdl.handle.net/10356/95281
http://hdl.handle.net/10220/8372
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The probabilistic responses of the maximum displacement and displacement ductility factor for a reinforced concrete (RC) flexural member against potential blast loadings are evaluated through a nonlinear dynamic analysis of its equivalent single-degree-of-freedom (SDOF) system. Monte-Carlo simulation is used in the analysis. Some differences are observed between the actual responses of the RC member and those of the equivalent SDOF system due to the complex behaviours of reinforced concrete structural members under blast conditions. Two non-dimensional indices are defined to quantify the differences and their expressions are generated through a large amount of numerical and statistical analyses. The approach of utilizing the indices into a probabilistic response assessment of RC flexural members accounting for different kinds of uncertainties is illustrated via four numerical examples which are verified through nonlinear dynamic finite element analysis. It is concluded that the probabilistic response of RC flexural members obtained from the developed approach have a similar distribution with those from probabilistic nonlinear finite element analysis.