Multiferroic BaTiO3-CoFe2O4 nanostructures

We report on the coupling between ferroelectric and magnetic order parameters in a nanostructured BaTiO3-CoFe2O4 ferroelectromagnet. This facilitates the interconversion of energies stored in electric and magnetic fields and plays...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhao, T., Salamanca-Riba, L., Zheng, H., Wang, J., Lofland, S. E., Ma, Z., Mohaddes-Ardabili, L., Shinde, S. R., Ogale, S. B., Bai, Feiming, Viehland, D., Jia, Y., Schlom, D. G., Wuttig, M., Roytburd, A., Ramesh, R.
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2012
Subjects:
Online Access:https://hdl.handle.net/10356/95371
http://hdl.handle.net/10220/8818
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-95371
record_format dspace
spelling sg-ntu-dr.10356-953712020-06-01T10:21:08Z Multiferroic BaTiO3-CoFe2O4 nanostructures Zhao, T. Salamanca-Riba, L. Zheng, H. Wang, J. Lofland, S. E. Ma, Z. Mohaddes-Ardabili, L. Shinde, S. R. Ogale, S. B. Bai, Feiming Viehland, D. Jia, Y. Schlom, D. G. Wuttig, M. Roytburd, A. Ramesh, R. School of Materials Science & Engineering DRNTU::Engineering::Materials::Nanostructured materials We report on the coupling between ferroelectric and magnetic order parameters in a nanostructured BaTiO3-CoFe2O4 ferroelectromagnet. This facilitates the interconversion of energies stored in electric and magnetic fields and plays an important role in many devices, including transducers, field sensors, etc. Such nanostructures were deposited on single-crystal SrTiO3 (001) substrates by pulsed laser deposition from a single Ba-Ti-Co-Fe-oxide target. The films are epitaxial in-plane as well as out-of-plane with self-assembled hexagonal arrays of CoFe2O4 nanopillars embedded in a BaTiO3 matrix. The CoFe2O4 nanopillars have uniform size and average spacing of 20 to 30 nanometers. Temperaturedependent magnetic measurements illustrate the coupling between the two order parameters, which is manifested as a change in magnetization at the ferroelectric Curie temperature. Thermodynamic analyses show that the magnetoelectric coupling in such a nanostructure can be understood on the basis of the strong elastic interactions between the two phases. 2012-10-29T07:31:50Z 2019-12-06T19:13:38Z 2012-10-29T07:31:50Z 2019-12-06T19:13:38Z 2004 2004 Journal Article Zheng, H., Wang, J., Lofland, S. E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T. et al. (2004). Multiferroic BaTiO3-CoFe2O4 nanostructures. Science, 303(5658), 661-663. https://hdl.handle.net/10356/95371 http://hdl.handle.net/10220/8818 10.1126/science.1094207 en Science © 2004 American Association for the Advancement of Science.
institution Nanyang Technological University
building NTU Library
country Singapore
collection DR-NTU
language English
topic DRNTU::Engineering::Materials::Nanostructured materials
spellingShingle DRNTU::Engineering::Materials::Nanostructured materials
Zhao, T.
Salamanca-Riba, L.
Zheng, H.
Wang, J.
Lofland, S. E.
Ma, Z.
Mohaddes-Ardabili, L.
Shinde, S. R.
Ogale, S. B.
Bai, Feiming
Viehland, D.
Jia, Y.
Schlom, D. G.
Wuttig, M.
Roytburd, A.
Ramesh, R.
Multiferroic BaTiO3-CoFe2O4 nanostructures
description We report on the coupling between ferroelectric and magnetic order parameters in a nanostructured BaTiO3-CoFe2O4 ferroelectromagnet. This facilitates the interconversion of energies stored in electric and magnetic fields and plays an important role in many devices, including transducers, field sensors, etc. Such nanostructures were deposited on single-crystal SrTiO3 (001) substrates by pulsed laser deposition from a single Ba-Ti-Co-Fe-oxide target. The films are epitaxial in-plane as well as out-of-plane with self-assembled hexagonal arrays of CoFe2O4 nanopillars embedded in a BaTiO3 matrix. The CoFe2O4 nanopillars have uniform size and average spacing of 20 to 30 nanometers. Temperaturedependent magnetic measurements illustrate the coupling between the two order parameters, which is manifested as a change in magnetization at the ferroelectric Curie temperature. Thermodynamic analyses show that the magnetoelectric coupling in such a nanostructure can be understood on the basis of the strong elastic interactions between the two phases.
author2 School of Materials Science & Engineering
author_facet School of Materials Science & Engineering
Zhao, T.
Salamanca-Riba, L.
Zheng, H.
Wang, J.
Lofland, S. E.
Ma, Z.
Mohaddes-Ardabili, L.
Shinde, S. R.
Ogale, S. B.
Bai, Feiming
Viehland, D.
Jia, Y.
Schlom, D. G.
Wuttig, M.
Roytburd, A.
Ramesh, R.
format Article
author Zhao, T.
Salamanca-Riba, L.
Zheng, H.
Wang, J.
Lofland, S. E.
Ma, Z.
Mohaddes-Ardabili, L.
Shinde, S. R.
Ogale, S. B.
Bai, Feiming
Viehland, D.
Jia, Y.
Schlom, D. G.
Wuttig, M.
Roytburd, A.
Ramesh, R.
author_sort Zhao, T.
title Multiferroic BaTiO3-CoFe2O4 nanostructures
title_short Multiferroic BaTiO3-CoFe2O4 nanostructures
title_full Multiferroic BaTiO3-CoFe2O4 nanostructures
title_fullStr Multiferroic BaTiO3-CoFe2O4 nanostructures
title_full_unstemmed Multiferroic BaTiO3-CoFe2O4 nanostructures
title_sort multiferroic batio3-cofe2o4 nanostructures
publishDate 2012
url https://hdl.handle.net/10356/95371
http://hdl.handle.net/10220/8818
_version_ 1681058468417503232