Efficiency enhancement in bulk-heterojunction solar cells integrated with large area Ag nano-triangle arrays
Efficiency enhancement in plasmonic bulk heterojunction (PCDTBT:PCBM) organic solar cells (OSCs) is demonstrated with the integration of large area periodic Ag nano-triangle (NT) arrays (that were fabricated using the cost-effective, high throughput nanosphere lithography technique) in the OSC devic...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2012
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/95412 http://hdl.handle.net/10220/8283 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Efficiency enhancement in plasmonic bulk heterojunction (PCDTBT:PCBM) organic solar cells (OSCs) is demonstrated with the integration of large area periodic Ag nano-triangle (NT) arrays (that were fabricated using the cost-effective, high throughput nanosphere lithography technique) in the OSC device. The improvements to the power conversion efficiency (from 4.24% to 4.52%) and to the short circuit current density (by ~12%) are attributed to an increase in exciton generation induced by the strong local E-field and the scattering generated by the localized surface plasmon resonance of the hexagonal NT arrays. These findings are validated by a range of steady state and transient optical spectroscopy and correlated with device performance data. Importantly, our work demonstrates the feasibility of integrating a simple cost-effective, tailorable and scalable nanofabrication technique with existing OSC fabrication processes. |
---|