High-performance biofuel cell made with hydrophilic ordered mesoporous carbon as electrode material

A highly hydrophilic ordered mesoporous carbon has been synthesized by a microwave assisted method from a mixture containing glucose and poly(vinyl alcohol) and with a silica template to have high hydrophilicity, low charge transfer resistance and large specific surface area. The new carbon material...

全面介紹

Saved in:
書目詳細資料
Main Authors: Guo, Chun Xian, Hu, Feng Ping, Lou, David Xiong Wen, Li, Chang Ming
其他作者: School of Chemical and Biomedical Engineering
格式: Article
語言:English
出版: 2013
主題:
在線閱讀:https://hdl.handle.net/10356/95432
http://hdl.handle.net/10220/9049
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:A highly hydrophilic ordered mesoporous carbon has been synthesized by a microwave assisted method from a mixture containing glucose and poly(vinyl alcohol) and with a silica template to have high hydrophilicity, low charge transfer resistance and large specific surface area. The new carbon material is further used as an electrode material to fabricate an anode-limited glucose/O2 biofuel cell, which gives an output power density of 110 μW cm−2 with cell voltage of 0.72 V, a performance much higher than the reported anodes made from SWNT, bi-polymer layer and carbon black at the same or even higher glucose concentration. This work provides a universal approach to synthesize functional carbon nanomaterials with desired architectures and properties for various important applications in energy conversion systems such as fuel cells and solar cells.