Uplift and erosion of the San Bernardino Mountains associated with transpression along the San Andreas fault, California, as constrained by radiogenic helium thermochronometry
Apatite helium thermochronometry provides new constraints on the tectonic history of a recently uplifted crystalline mass adjacent to the San Andreas fault. By documenting aspects of the low-temperature (40°–100°C) thermal history of the tectonic blocks of the San Bernardino Mountains in southern Ca...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
2012
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/95538 http://hdl.handle.net/10220/8430 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-95538 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-955382020-09-26T21:31:19Z Uplift and erosion of the San Bernardino Mountains associated with transpression along the San Andreas fault, California, as constrained by radiogenic helium thermochronometry Sieh, Kerry Spotila, James A. Farley, Kenneth A. DRNTU::Science::Physics::Meteorology and climatology Apatite helium thermochronometry provides new constraints on the tectonic history of a recently uplifted crystalline mass adjacent to the San Andreas fault. By documenting aspects of the low-temperature (40°–100°C) thermal history of the tectonic blocks of the San Bernardino Mountains in southern California, we have placed new constraints on the magnitude and timing of uplift. Old helium ages (64–21 Ma) from the large Big Bear plateau predate the recent uplift of the range and show that only several kilometers of exhumation has taken place since the Late Cretaceous period. These ages imply that the surface of the plateau may have been exposed in the late Miocene and was uplifted only ∼1 km above the Mojave Desert in the last few Myr by thrusting on the north and south. A similar range in helium ages (56–14 Ma) from the higher San Gorgonio block to the south suggests that its crest was once contiguous with that of the Big Bear block and that its greater elevation represents a localized uplift that the Big Bear plateau did not experience. The structure of the San Gorgonio block appears to be a gentle antiform, based on the geometry of helium isochrons and geologic constraints. Young ages (0.7–1.6 Ma) from crustal slices within the San Andreas fault zone indicate uplift of a greater magnitude than blocks to the north. These smaller blocks probably experienced ≥3–4 km of uplift at rates ≥1.5 mm/yr in the past few Myr and would stand ≥2.5 km higher than the Big Bear plateau if erosion had not occurred. The greater uplift of tectonic blocks adjacent to and within the San Andreas fault zone is more likely the result of oblique displacement along high-angle faults than motion along the thrust fault that bounds the north side of the range. We speculate that this uplift is the result of convergence and slip partitioning associated with local geometric complexities along this strike-slip system. Transpression thus appears to have been accommodated by both vertical displacement within the San Andreas fault zone and thrusting on adjacent structures. Published version 2012-08-28T06:02:41Z 2019-12-06T19:16:49Z 2012-08-28T06:02:41Z 2019-12-06T19:16:49Z 1998 1998 Journal Article Spotila, J. A., Farley, K. A., & Sieh, K. (1998). Uplift and erosion of the San Bernardino Mountains associated with transpression along the San Andreas fault, California, as constrained by radiogenic helium thermochronometry. Tectonics, 17(3), 360–378. https://hdl.handle.net/10356/95538 http://hdl.handle.net/10220/8430 10.1029/98TC00378 en Tectonics © 1998 AGU. This paper was published in Tectonics and is made available as an electronic reprint (preprint) with permission of American Geophysical Union. The paper can be found at: DOI [http://dx.doi.org/10.1029/98TC00378]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law. 19 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Science::Physics::Meteorology and climatology |
spellingShingle |
DRNTU::Science::Physics::Meteorology and climatology Sieh, Kerry Spotila, James A. Farley, Kenneth A. Uplift and erosion of the San Bernardino Mountains associated with transpression along the San Andreas fault, California, as constrained by radiogenic helium thermochronometry |
description |
Apatite helium thermochronometry provides new constraints on the tectonic history of a recently uplifted crystalline mass adjacent to the San Andreas fault. By documenting aspects of the low-temperature (40°–100°C) thermal history of the tectonic blocks of the San Bernardino Mountains in southern California, we have placed new constraints on the magnitude and timing of uplift. Old helium ages (64–21 Ma) from the large Big Bear plateau predate the recent uplift of the range and show that only several kilometers of exhumation has taken place since the Late Cretaceous period. These ages imply that the surface of the plateau may have been exposed in the late Miocene and was uplifted only ∼1 km above the Mojave Desert in the last few Myr by thrusting on the north and south. A similar range in helium ages (56–14 Ma) from the higher San Gorgonio block to the south suggests that its crest was once contiguous with that of the Big Bear block and that its greater elevation represents a localized uplift that the Big Bear plateau did not experience. The structure of the San Gorgonio block appears to be a gentle antiform, based on the geometry of helium isochrons and geologic constraints. Young ages (0.7–1.6 Ma) from crustal slices within the San Andreas fault zone indicate uplift of a greater magnitude than blocks to the north. These smaller blocks probably experienced ≥3–4 km of uplift at rates ≥1.5 mm/yr in the past few Myr and would stand ≥2.5 km higher than the Big Bear plateau if erosion had not occurred. The greater uplift of tectonic blocks adjacent to and within the San Andreas fault zone is more likely the result of oblique displacement along high-angle faults than motion along the thrust fault that bounds the north side of the range. We speculate that this uplift is the result of convergence and slip partitioning associated with local geometric complexities along this strike-slip system. Transpression thus appears to have been accommodated by both vertical displacement within the San Andreas fault zone and thrusting on adjacent structures. |
format |
Article |
author |
Sieh, Kerry Spotila, James A. Farley, Kenneth A. |
author_facet |
Sieh, Kerry Spotila, James A. Farley, Kenneth A. |
author_sort |
Sieh, Kerry |
title |
Uplift and erosion of the San Bernardino Mountains associated with transpression along the San Andreas fault, California, as constrained by radiogenic helium thermochronometry |
title_short |
Uplift and erosion of the San Bernardino Mountains associated with transpression along the San Andreas fault, California, as constrained by radiogenic helium thermochronometry |
title_full |
Uplift and erosion of the San Bernardino Mountains associated with transpression along the San Andreas fault, California, as constrained by radiogenic helium thermochronometry |
title_fullStr |
Uplift and erosion of the San Bernardino Mountains associated with transpression along the San Andreas fault, California, as constrained by radiogenic helium thermochronometry |
title_full_unstemmed |
Uplift and erosion of the San Bernardino Mountains associated with transpression along the San Andreas fault, California, as constrained by radiogenic helium thermochronometry |
title_sort |
uplift and erosion of the san bernardino mountains associated with transpression along the san andreas fault, california, as constrained by radiogenic helium thermochronometry |
publishDate |
2012 |
url |
https://hdl.handle.net/10356/95538 http://hdl.handle.net/10220/8430 |
_version_ |
1681057920647692288 |