Experimental evidences of topological surface states of β-Ag2Te
We present evidence of topological surface states in β-Ag2Te through first-principles calculations, periodic quantum interference effect and ambipolar electric field effect in single crystalline nanoribbon. Our first-principles calculations show that β-Ag2Te is a topological insulator with a gapless...
Saved in:
Main Authors: | , , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/95712 http://hdl.handle.net/10220/10063 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We present evidence of topological surface states in β-Ag2Te through first-principles calculations, periodic quantum interference effect and ambipolar electric field effect in single crystalline nanoribbon. Our first-principles calculations show that β-Ag2Te is a topological insulator with a gapless Dirac cone with strong anisotropy. To experimentally probe the topological surface state, we synthesized high quality β-Ag2Te nanoribbons and performed electron transport measurements. The coexistence of pronounced Aharonov-Bohm oscillations and weak Altshuler-Aronov-Spivak oscillations clearly demonstrates coherent electron transport around the perimeter of β-Ag2Te nanoribbon and therefore the existence of topological surface states, which is further supported by the ambipolar electric field effect for devices fabricated by β-Ag2Te nanoribbons. The experimental evidences of topological surface states and the theoretically predicted anisotropic Dirac cone of β-Ag2Te suggest that the material may be a promising candidate of topological insulator for fundamental study and future spintronic devices. |
---|