Asymptotically good quantum codes exceeding the Ashikhmin-Litsyn-Tsfasman bound

It is known that quantum error correction can be achieved using classical binary codes or additive codes over F4 (see [2], [3], [9]). In [1] and [4], asymptotically good quantum codes from algebraic-geometry codes were constructed and, in [1], a bound on on (δ, R) was computed from the Tsfasman-Vlad...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Chen, Hao, Ling, San, Xing, Chaoping
مؤلفون آخرون: School of Physical and Mathematical Sciences
التنسيق: مقال
اللغة:English
منشور في: 2013
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/95782
http://hdl.handle.net/10220/9824
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:It is known that quantum error correction can be achieved using classical binary codes or additive codes over F4 (see [2], [3], [9]). In [1] and [4], asymptotically good quantum codes from algebraic-geometry codes were constructed and, in [1], a bound on on (δ, R) was computed from the Tsfasman-Vladut-Zink bound of the theory of classical algebraic-geometry codes. In this correspondence, by the use of a concatenation technique we construct a family of asymptotically good quantum codes exceeding the bound in a small interval.