A temporal frequency warped (TFW) 2D psychoacoustic filter for robust speech recognition system

In this paper, a novel hybrid feature extraction algorithm is proposed, which implements forward masking, lateral inhibition, and temporal integration with a simple 2D psychoacoustic filter. The proposed algorithm consists of two key parts, the 2D psychoacoustic filter and cepstral mean variance nor...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Dai, Peng, Soon, Ing Yann
مؤلفون آخرون: School of Electrical and Electronic Engineering
التنسيق: مقال
اللغة:English
منشور في: 2013
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/95803
http://hdl.handle.net/10220/11933
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:In this paper, a novel hybrid feature extraction algorithm is proposed, which implements forward masking, lateral inhibition, and temporal integration with a simple 2D psychoacoustic filter. The proposed algorithm consists of two key parts, the 2D psychoacoustic filter and cepstral mean variance normalization (CMVN). Mathematical derivation is provided to show the correctness of the 2D psychoacoustic filter based on the characteristic functions of masking effects. The effectiveness of the proposed algorithm is tested on the AURORA2 database. Extensive comparison is made against lateral inhibition (LI), forward masking (FM), CMVN, RASTA filter, the ETSI standard advanced front-end feature extraction algorithm (AFE), and the temporal warped 2D psychoacoustic filter. Experimental results show significant improvements from the proposed algorithm, a relative improvement of nearly 46.78% over the baseline mel-frequency cepstral coefficients (MFCC) system in noisy conditions.