A novel core–shell nanocomposite electrolyte for low temperature fuel cells
We report a rapid and cost-effective method to coat SDC nano-particles with a thin LiZn-oxide nanocomposite layer. This composite is determined to have a structure with two phases consisting of Li2O and ZnO and examined to distribute over the surfaces of SDC nano-particles uniformly by using energy...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Online Access: | https://hdl.handle.net/10356/95837 http://hdl.handle.net/10220/11403 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We report a rapid and cost-effective method to coat SDC nano-particles with a thin LiZn-oxide nanocomposite layer. This composite is determined to have a structure with two phases consisting of Li2O and ZnO and examined to distribute over the surfaces of SDC nano-particles uniformly by using energy dispersive X-ray (EDX) and high-resolution TEM (HRTEM). The measurments of electrical property demonstrate that such a thin layer enables the ionic conductivity of SDC to be significantly increased (higher than 0.1 S cm−1 at the temperature of 300 °C) equivalent to the conductivity of pure SDC at 800 °C or YSZ at 1000 °C. This superionic conductivity is caused by the two-phase interfaces formed between nano-particles. |
---|