Euclidean and Hermitian self-orthogonal algebraic geometry codes and their application to quantum codes
In the present paper, we show that if the dimension of an arbitrary algebraic geometry code over a finite field of even characteristic is slightly less than n/2-g with n being the length of the code and g being the genus of the base curve, then it is equivalent to an Euclidean self-orthogonal code....
محفوظ في:
المؤلفون الرئيسيون: | , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2013
|
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/95846 http://hdl.handle.net/10220/11432 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
الملخص: | In the present paper, we show that if the dimension of an arbitrary algebraic geometry code over a finite field of even characteristic is slightly less than n/2-g with n being the length of the code and g being the genus of the base curve, then it is equivalent to an Euclidean self-orthogonal code. Previously, such results required a strong condition on the existence of a certain differential. We also show a similar result on Hermitian self-orthogonal algebraic geometry codes. As a consequence, we can apply our result to quantum codes and obtain some good quantum codes. In particular, we obtain a q-ary quantum [[q+1,1]]-MDS code for an even power q which is essential for quantum secret sharing. |
---|