Size-dependent exciton recombination dynamics in single CdS nanowires beyond the quantum confinement regime

A deep understanding of the size, surface trapping, and scattering effects on the recombination dynamics of CdS nanowires (NWs) is a key step for the design of on-demand CdS-based nanodevices. However, it is often very difficult to differentiate these intertwined effects in the NW system. In this ar...

全面介紹

Saved in:
書目詳細資料
Main Authors: Liu, Xinfeng, Zhang, Qing, Xing, Guichuan, Xiong, Qihua, Sum, Tze Chien
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2013
主題:
在線閱讀:https://hdl.handle.net/10356/95926
http://hdl.handle.net/10220/10033
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:A deep understanding of the size, surface trapping, and scattering effects on the recombination dynamics of CdS nanowires (NWs) is a key step for the design of on-demand CdS-based nanodevices. However, it is often very difficult to differentiate these intertwined effects in the NW system. In this article, we present a comprehensive study on the size-dependent exciton recombination dynamics of high-quality CdS NWs (with diameters from 80 to 315 nm) using temperature-dependent and time-resolved photoluminescence (TRPL) spectroscopy in a bid to distinguish the contributions of size and surface effects. TRPL measurements revealed two distinct processes that dominate the band edge recombination dynamics—a fast decay process (τ1) originating from the near-surface recombination and a slower decay process (τ2) arising from the intrinsic free exciton A decay. With increasing NW diameters, τ1 increases from 0.10 to 0.42 ns due to the decreasing surface-to-volume ratio of the NWs, whereas τ2 increases from 0.36 to 1.21 ns due to decreased surface scattering in the thicker NWs—as validated by the surface passivation and TRPL studies. Our findings have discerned the interplay between size and surface effects and advanced the understanding of size-dependent optoelectronic properties of one-dimensional semiconductor nanostructures for applications in surface- and size-related nanoscale devices.