Enhance electron transfer and performance of microbial fuel cells by perforating the cell membrane
In this study, a facile bacteria treatment approach by chemically "perforating" pores and channels on the bacterial membrane is developed to significantly improve the electron transfer rate and power density of microbial fuel cell (MFC). The enhancements are due to increased mediator excre...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Online Access: | https://hdl.handle.net/10356/95940 http://hdl.handle.net/10220/10858 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | In this study, a facile bacteria treatment approach by chemically "perforating" pores and channels on the bacterial membrane is developed to significantly improve the electron transfer rate and power density of microbial fuel cell (MFC). The enhancements are due to increased mediator excretion evidenced by UV–vis absorption measurements and enhanced direct electron transfer through the bacterial membrane as proved by the significantly increased bioelectrocatalytic currents measured with cyclic voltammograms. |
---|