Improved constructions of frameproof codes

Frameproof codes are used to preserve the security in the context of coalition when fingerprinting digital data. Let Mc,l(q) be the largest cardinality of a q-ary c-frameproof code of length l and Rc,l=limq→∞ Mc,l(q)/q[ l/c]. It has been determined by Blackburn that Rc,l=1 when l≡1(mod c), Rc,l=2 wh...

Full description

Saved in:
Bibliographic Details
Main Authors: Chee, Yeow Meng, Zhang, Xiande
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2013
Online Access:https://hdl.handle.net/10356/95980
http://hdl.handle.net/10220/11423
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Frameproof codes are used to preserve the security in the context of coalition when fingerprinting digital data. Let Mc,l(q) be the largest cardinality of a q-ary c-frameproof code of length l and Rc,l=limq→∞ Mc,l(q)/q[ l/c]. It has been determined by Blackburn that Rc,l=1 when l≡1(mod c), Rc,l=2 when c=2 and l is even, and R3,5=5/3. In this paper, we give a recursive construction for c-frameproof codes of length l with respect to the alphabet size q . As applications of this construction, we establish the existence results for q-ary c-frameproof codes of length c+2 and size c+2/c(q-1)2+1 for all odd q when c=2 and for all q≡4 when c=3 . Furthermore, we show that Rc,c+2=(c+2)/c meeting the upper bound given by Blackburn, for all integers c such that c+1 is a prime power.